期刊文献+

基于N-gram剪枝技术的隐患文本自动评估模型

An Automatic Assessment Model Based on N-gram Pruning Technique for Hidden Danger Text
下载PDF
导出
摘要 为了自动分析海上钻井平台隐患文本中蕴含的隐患响应程度信息,量化隐患严重程度,提出一种基于N-gram词袋向量的隐患响应等级量化评估模型。首先针对1565条钻井平台的现场隐患记录进行分词与过滤处理;其次再以N-gram作为特征单元重塑词袋维度;然后提出使用逆TF-IDF值来强化特征值;最后,使用朴素贝叶斯构建隐患量化模型。结果表明:使用该方法的隐患量化评估模型具有较高的精确率、召回率及F1值。 To automatically analyze the response level information of hidden dangers contained in hidden danger texts and quantify the severity, a quantitative evaluation model based on N-gram word bag vectors is proposed for the response level of hidden dangers. Firstly, segment and filter the on-site hazard records of 1565 drilling platforms;Secondly, using N-gram as feature units to reshape the bag of words dimension;Then, it is proposed to use the inverse TF-IDF value to enhance the feature values;Finally, use naive Bayes to construct a hazard quantification model. The results show that the hazard quantification evaluation model using this method has high accuracy, recall, and F1 value.
出处 《矿山工程》 2024年第3期388-394,共7页 Mine Engineering
  • 相关文献

参考文献13

二级参考文献134

共引文献411

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部