期刊文献+

周期性规则拓扑流动损失的定量分析和预测

Quantitatively Prediction and Analysis of Hydrodynamic Loss across Periodic Regular Topologies
下载PDF
导出
摘要 对能源转换系统中的流动损失进行准确评估有助于提高系统能效优化的效率。针对具有周期性规则拓扑的扰流结构,提出了一种可用于定量分析和预测流动损失的完备数学模型。以常见的错排短柱阵列为例,详细阐述了模型的建立方法,以及如何基于所建立的指数型经验方程对流动损失进行定量的因素分析。为此,建立了一套采用对称和周期边界的数值方法,用于高效收集模型建立所需的基础数据。研究结果表明,数学模型中特定结构或流动参数对应指数的绝对值可表征其对流动损失的定量影响。该模型具有较高的普适性,可用于具有类似拓扑特征和任意数量影响因素的扰流结构流动损失分析和预测。 Evaluating hydrodynamic loss in energy conversion systems precisely is of vital importance in improving system energy efficiency. This paper proposed a complete mathematical model which can be used for analyzing and predicting pressure loss across any topology with regular periodic features on a quantitative level. Taking staggered arrays of short pin fins as a typical example, de-tailed process of building up the model is demonstrated, based on which the hydrodynamic loss is analyzed quantitatively according to the exponent-type empirical equations. Specifically, a nu-merical approach is proposed employing symmetric and periodic boundary conditions, to collect fundamental data required for establishing the model. The result indicated that, the absolute value of the exponents of particular structural or hydrodynamic parameters can be used for charac-terizing their quantitative influence upon pressure loss. The model is highly adaptable for various kinds of geometries with similar topology features and amounts of influencing parameters, thus can be used to predict and analyzing the hydrodynamic loss of the aforementioned structures.
出处 《机械工程与技术》 2020年第5期434-444,共11页 Mechanical Engineering and Technology
关键词 周期拓扑 流动损失 定量预测 数学模型 数值模拟 Periodic Topology Hydrodynamic Loss Quantitative Prediction Mathematical Model Numerical Simulation
  • 相关文献

参考文献6

二级参考文献31

  • 1段立强,林汝谋,杨勇平.燃气轮机采用不同冷却技术对IGCC系统性能影响[J].工程热物理学报,2005,26(z1):17-20. 被引量:2
  • 2曹玉章,陶智,徐国强,等.航空发动机传热学[M].北京:北京航空航天大学出版社,2005.
  • 3RICE I G. Steam-cooled blading in a combined reheat gas turbine/reheat steam turbine cycle, Part I - Performance evaluation [Rl ASME Paper No . 79-1P1C-GT-2. New York:ASME, 1979.
  • 4CONKLIN G E. Film cooling with steam injection through three staggered rows of inclined holes over a straight airfoil [Rl ASME Paper 83-GT-30. New York: ASME, 1983.
  • 5STECCO S S, FACCHINI B. A simplified thermodynamic analysis of blade cooling effects incornbined power plants [C] Proc of Second ASME Cogen- turbo , Montreux , Switzerland, 1988.
  • 6FACCHINI B, GIOVANNI F, INNOCENTI L. Blade cooling improvement for heavy duty gas turbine: the air coolant temperature reduction and the introduction of steam and mixed steam/air cooling [J]. Int J of Therm Sci, 2000,39(1) :74-84.
  • 7CORMAN J C. H gas turbine combined cycle technology and development status [R]. ASME Paper 96-GT-ll. New York:ASME, 1996.
  • 8MAEKAWA A. uEMATSU K, ITO E. et al . De- velopment of H series gas turbine [R]. ASME PaPer2001-GT-0500. New York:ASME, 200l.
  • 9SHUI L Q, GAO J. M. , SHI X J, et al. Effect of duct aspect ratio on heat transfer and friction in steamcooled ducts with 60· angled rib turbulators [J]. Exp Therm and Fluid Sci, 2013, 49: 123-134.
  • 10RON-HO N, HUMNER W, FAN G, etal. Comparison of predictions from conjugate heat transfer analysis of a film cooled turbine vane to experimental data [C]. Proc of ASME Turbo Expo GT 2013-94716, San Antonio, Texas, USA, 2013.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部