摘要
电子机械制动器是以电机驱动元件作为制动执行器,代替传统的液压制动方式,来解决液压制动系统存在的响应滞后问题。本文对电子机械制动器进行了设计建模、仿真分析。首先根据汽车参数对电子机械制动器的电机、行星齿轮减速器、滚珠丝杠进行设计。采用CATIA对电子机械制动器各部件进行三维建模,然后利用ANSYS/Workbench对刹车盘和刹车片进行瞬态动力学仿真,验证了模型的有效性和制动效果的稳定性。本研究的建模仿真为电子机械制动器的性能提升和优化设计提供了有力的理论支撑和技术参考,有助于推动其在汽车及相关领域中的广泛应用。Electronic mechanical brakes use motor-driven components as brake actuators to replace traditional hydraulic braking methods and solve the response lag problem in hydraulic braking systems. This article presents the design, modeling, and simulation analysis of electronic mechanical brakes. Firstly, the design of the electronic mechanical brakes motor, planetary gear reducer, and ball screw is based on the vehicle parameters. CATIA is used for three-dimensional modeling of the components of the electronic mechanical brakes. Subsequently, transient dynamic simulations of the brake disc and brake pads are conducted using ANSYS/Workbench to validate the effectiveness of the model and the stability of the braking performance. The modeling and simulation of this study provide strong theoretical support and technical reference for the performance improvement and optimization design of electronic mechanical brakes, which will help promote their widespread application in the automotive and related fields.
出处
《机械工程与技术》
2024年第5期415-422,共8页
Mechanical Engineering and Technology