期刊文献+

抗乳腺癌候选药物的生物活性预测建模

Predictive Modeling of Bioactivity of Anti-Breast Cancer Drug Candidates
下载PDF
导出
摘要 本文构建化合物对Erα生物活性的定量预测模型,结合集成学习方法与逻辑回归方法,使用自动的参数优化方法,使各算法达到最优泛化性能。首先使用随机森林算法,以信息理论为基础,将化合物的分子描述符对雌激素受体α亚型的活性影响进行特征重要性排序,得到可用于算法判断的20个高效变量;再根据这20个高效分子描述符,利用岭回归算法实现对ERα生物活性的定量预测。结果表明,该模型可以准确预测Erα生物活性,为科学选择抗乳腺癌药物提供了新思路。 In this paper, a quantitative prediction model for ERα biological activity of compounds was con-structed, combined with integrated learning method and logistic regression method, and automatic parameter optimization method was used to achieve the optimal generalization performance of each algorithm. First, based on information theory, random forest algorithm was used to rank the characteristic importance of the effects of molecular descriptors of compounds on the activity of es-trogen receptor α subtypes, and 20 efficient variables were obtained. Based on these 20 molecular descriptors, ridge regression algorithm was used to quantitatively predict the biological activity of ERα. The results show that this model can accurately predict the biological activity of Erα, which provides a new idea for scientific selection of anti-breast cancer drugs.
作者 潘伟民
出处 《建模与仿真》 2023年第3期1820-1828,共9页 Modeling and Simulation
  • 相关文献

参考文献6

二级参考文献80

  • 1CUI LiJie,Lü ZhenZhou & ZHAO XinPan School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China(Technological Sciences),2010,53(4):1138-1145. 被引量:43
  • 2GuoG D, Zhang H J. Boosting for Fast Face Recognition. In: Proc of 2nd International Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-Time Systems. Vancouver, Canada, 2001, 96- 100.
  • 3Abney S, Schapire R E, Singer Y. Boosting Applied to Tagging and PP Attachment. ln: Proc of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. New Brunswick, NJ, 1999, 38-45.
  • 4Rochery M, Schapire R E, Rahim M, Gupta N. BoosTexter for Text Categorization in Spoken Language Dialogue. In: Autmmtic Speech Recognition and Understanding Workshop. Madonna di Campiglio Trento, Italy, 2001. Available at http://www, cs.princeton, edu/-schapire/publist, html.
  • 5Rochery M, Schapire R, Rahim M, Gupta N, Riceardi G, Bangalore S, Alshawi H, Douglas S. Combining Prior Knowledge and Boosting for Call Class~flcat~on in Spoken Language DiaLogue. In:Proc of International Conference on Aceousties, Speech and Signal. Orlando, Florida. 2002. Available at http://www, cs/princetonedu/-schapire/whatsnew. html.
  • 6Schapire R E, Singer Y. BcosTexter: A Bcosting-Based System for Text Categorization. Machine Learning, 2000, 39(2- 3): 135- 168.
  • 7Schapire R E, Rochery M, Rahim M, Gupta N. Incorporating Prior Knowledge into Boosting. In: Proc of the 19th International Conference on Machine Learning. Sydney, 2002, 538 - 545.
  • 8Schwenk H, Bengio Y. Adal3oosting Neural Networks: Application to On-Line Character Recognition. In: Proc of the International Conference on Artificial Neural Networks ( ICANN' 97 ). Lausanne, Switzerland: Springer-Verlag, 1997, 967-972.
  • 9Schwenk H. Using Boosting to lmprove a Hybrid HMM/'Neural Network Speech Recognizer. In: Proc of the IEEE International Conferenee on Acoustics, Speech, and Signal (ICASSP 99 ). Phoenix, Arizona, 1999, H : 1009 - 1012.
  • 10Myers K, Keams M, Singh S, Walker M A. A Boosting Approach to Topic Spotting on Subdialogues. In: Proc of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2000, 655 - 662.

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部