期刊文献+

基于混合IRS辅助大规模MIMO系统的仿真信道估计方法

Simulation Channel Estimation Method for Large-Scale MIMO Systems Based on Hybrid IRS
下载PDF
导出
摘要 对于IRS辅助的大规模MIMO系统,大多数研究都需要基于信道状态信息已知,而IRS通常为无源中继,导频开销较大,信道估计具有挑战性。为此,研究引入了一种包含有源和无源元件的混合IRS架构,使用少量RF链接收用户发送的上行导频信号,利用毫米波信道的稀疏特性,采用压缩感知算法重构信道,减少了导频损耗。考虑到信道为复数矩阵,传统的方法都将其实部虚部分开输入网络进行训练,该类方法会丢失信道的部分信息。为此,研究引入了一种注意力引导的复数深度去噪的神经网络AM-DnCNN。该网络可以将信道看作是二维带有噪声的矩阵进行训练,引入注意力机制加强信道的噪声特征,网络输出噪声矩阵,重构噪信道矩阵。仿真结果表明,所提方法可以利用更少的导频获得更优的信道状态信息,有效减少了导频损耗,且在不同路径数量和不同信噪比的情况下,网络也具有很好的鲁棒性。 For IRS-assisted large-scale MIMO systems, most studies need to be based on channel state infor-mation known, and IRS is usually passive relay, with high pilot overhead and challenging channel estimation. To this end, a hybrid IRS architecture containing active and passive components is in-troduced. A small number of RF links are used to receive upstream pilot signals sent by users. The sparse characteristics of millimeter wave channels are utilized to reconstruct the channels by com-pressed sensing algorithm to reduce pilot losses. Considering that the channel is a complex matrix, traditional methods separate the real and imaginary parts into the network for training, which will lose some information of the channel. Therefore, an attention-guided complex depth denoising neural network AM-DnCNN is introduced. In this network, the channel can be regarded as a two-dimensional matrix with noise for training. Attention mechanism is introduced to enhance the noise characteristics of the channel. The network outputs the noise matrix and reconstructs the de-noised channel matrix. The simulation results show that the proposed method can use fewer pi-lots to obtain better channel state information, effectively reduce pilot loss, and the network also has good robustness under different number of paths and different SNR.
作者 邬婷婷 李烨
出处 《建模与仿真》 2023年第3期3088-3099,共12页 Modeling and Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部