期刊文献+

一种可实现快速PCR检测的微流控芯片设计

Design of a Microfluidic Chip for Rapid PCR Detection
原文传递
导出
摘要 针对常见荧光定量聚合酶链式反应(Polymerase Chain Reaction, PCR)仪中存在成本高和检测周期长的问题,为降低成本、扩展应用范围和提高检测速度,本论文设计了一种新型的微流控芯片,通过传热分析以及单微通道的数值模拟等方法对其进行了结构优化。同时,通过改进注射模块,优化缩小荧光检测模块体积等措施,能大大减小PCR仪器的尺寸。采用乙型肝炎病毒(HBV)试剂盒对该微流控芯片进行了PCR实验验证,结果说明能够减少检测时间,并且降低PCR核心功能的成本。仿真模拟结果表明在95度和60度的均匀温区内,各个温度区间保持在2度以内,满足PCR实验要求;实验结果表明流体流速为1.1 mm/s,反应时间相比传统荧光PCR仪缩短了8分钟,铝块实际加热温度分别为98度和65度符合扩增要求,阳性样本经过实验扩增得到的荧光值从0.2扩增至1左右,实现了微流控PCR仪器的扩增实验要求。 In response to the high costs and extended detection cycles associated with conventional Fluores-cent Quantitative Polymerase Chain Reaction (PCR) instruments, this paper presents the design of a microfluidic chip. The chip underwent thermal analysis and numerical simulation of a single mi-crochannel to optimize its structure. Through the incorporation of an injection module for flow rate control and the optimization of the fluorescence detection module for portability, the study utilized Hepatitis B Virus (HBV) reagents in PCR experiments. This design not only resulted in cost savings but also significantly shortened the detection time. Simulation results demonstrate that within uniform temperature zones of 95˚C and 60˚C, each temperature interval remains within 2 degrees, meeting PCR experiment requirements. Experimental results reveal a fluid flow speed of 1.1 mm/s, reducing reaction time by 8 minutes compared to traditional fluorescent PCR instruments. The ac-tual heating temperatures of the aluminum block are 98˚C and 65˚C, meeting amplification re-quirements. Positive samples exhibit an increase in fluorescence values from 0.2 to around 1, con-firming the fulfillment of amplification requirements in the microfluidic PCR instrument.
出处 《建模与仿真》 2024年第2期1523-1533,共11页 Modeling and Simulation
  • 相关文献

参考文献4

二级参考文献119

  • 1薛辉,王玮,李志信,过增元.自然对流型PCR芯片的热分析与设计[J].工程热物理学报,2005,26(z1):140-142. 被引量:2
  • 2陈兴,崔大付,刘长春,蔡浩原.基于BioMEMS技术的DNA固相萃取芯片的制备[J].分析化学,2006,34(3):433-436. 被引量:3
  • 3Mullis K B, Ferre F, Gibbs R A. The Polymerase Chain Reaction[M]. Boston: Birkhauser, 1994.
  • 4Shoffner M A, Cheng J, Hvichia G E, et al. Chip PCR. I. Surface Passivation of Microfabricated Silicon - glass Chips for PCR [ J ]. Nucleic Acids Research, 1996, 24 (2) : 375 - 379.
  • 5Kopp M U, Melloo A J, Manz A. Chemical Amplification [J]. Continuous-flow PCR on a Chip Science, 1998, 28(15) : 1046 -1048.
  • 6Wang W, Li Z X, Luo R, et al. Droplet Based Micro Oscillating Flow- through PCR Chip[J]. Journal of Micromechanics and Microengineering, 2005, 15 ( 8 ) : 1369 - 1377.
  • 7Krishnan M, Ugaz V M, Burns M A. PCR in a Rayleigh - Benard Convection Cell[J]. Science, 2002, 298:793.
  • 8Braun D, Goddard N L, Libchaber A. Exponential DNA Replication by Laminar Convection [ J ]. Physical Review Letters, 2003, 91(15) :158103(4).
  • 9Krishnan M, Agrawal N, Burns M A, et al. Reactions and fluidics in miniaturized natural convection systems [ J ]. Anal Chem, 2004, 76:6254 -6265.
  • 10Dahm R. Human Genetics,2008,122:565-581.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部