期刊文献+

分子机器中环状分子热传导性质的理论研究 被引量:1

Theoretical Study on the Heat Conductivities of Cyclic Molecules in Molecular Machines
下载PDF
导出
摘要 运用晶格动力学理论推导了分子机器中环状分子振动的能量通量公式,在此基础上再应用格林-久保公式推导了环状分子的热传导系数公式。由于环状分子的热传导系数与声子的谱线宽度有关,因此还推导了其声子谱线宽度公式。数值计算结果表明,环状分子的热传导系数随着环状分子长度的增加而增加,并且在环状分子无限增长时趋于无限,因此任何长度的环状分子其热传导性质都存在尺寸效应。数值计算结果还表明,长环状分子的热传导系数主要来自于短波矢声子的贡献。 The formulas for energy flux of atomic vibrations and linewidths of phonons of cyclic molecules in molecular machines were derived based on the lattice dynamics, and then based on those formulas and Green-Kubo formula, the formula for heat conductivities of cyclic molecules was derived. Finally the numerical calculations were carried out. The numerical results show that the heat conductivity of a short cyclic molecule increases when its length increases and will tend to infinity when its length tends to infinity, so there is size effect of the heat conductivity in a cyclic molecule with any length. The numerical results also show that the main contributions to the heat conductivity of a long cyclic molecule are made by phonons with short wave vectors.
作者 黄建平 唐婧
出处 《现代物理》 2017年第5期169-174,共6页 Modern Physics
  • 相关文献

参考文献1

二级参考文献24

  • 1唐祯安,丁海涛,黄正兴,许自强,李新.二氧化硅薄膜比热容分子动力学模拟[J].大连理工大学学报,2005,45(3):313-315. 被引量:1
  • 2胡明雨,陈震,杨决宽,庄苹,朱健,陈云飞.二氧化硅薄膜导热系数试验研究[J].东南大学学报(自然科学版),2005,35(3):396-399. 被引量:7
  • 3GLADKIKH N T, BOGATYRENKO S I, KRYSHTAL A P, et al. Melting point lowering of thin metal films (Me = In, Sn, Bi, Pb) in Al/Me/Al film system [J]. Appl Surf Sci, 2003, 219:338-346.
  • 4SANDEEP P, VIJAY S. Size dependence of thermal expansion of nanostructures [J]. Phys Rev:B, 2005, 72 (11): 113404- 1 - 4.
  • 5ORAIN S, SCUDELLER Y, BROUSSE T. Structural and microstructural effects on the thermal conductivity of zirconia thin films [J]. Microscale Thermophysical Engineering, 2001, 5 (4): 267-275.
  • 6DINESH P. Molecular dynamics simulations of biological membranes in the presence of cryoprotectants [D]. Louisiana State University, 2005.
  • 7BORN M, HUANG K. Dynamical theory of crystal lattices [M]. Oxford: Clarendon Press, 1968.
  • 8BOTTGER H. Principles of the theory of lattice dynamics [M]. Weinheim: Physik-Verlag, 1983.
  • 9SEMWAL B S, SHARMA P K. Thermal conductivity of an anharmonic crystal [J]. Phys Rev: B, 1972, 5: 3909- 3914.
  • 10LINDERMANN F A. fiber die berechnung molecularer eigenfrequenzen[J]. Z Phys, 1910, 11:609-612.

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部