期刊文献+

Al-Cu-Mg合金的预变形、位错密度与位错强化的定量研究 被引量:5

The Quantitative Research of Deformation, Dislocation Density and Dislocation Strengthening in Al-Cu-Mg Alloy
下载PDF
导出
摘要 通过拉伸性能测试、X射线衍射仪(XRD)和透射电镜(TEM)分析等方法,研究了Al-Cu-Mg合金的预变形、位错密度与位错强化的定量关系。结果表明:预变形增加了合金热轧板的位错密度,使晶内析出相细小弥散分布,提高了合金的强度,缩短了合金达到峰值时效的时间。采用TEM网格交线法和XRD图谱法测得的位错密度都随着预变形量的增加而增大,增大速率逐渐减小,最终趋于饱和,建立了位错密度与预变形量的函数模型ρ=1.28-1.08e-0.7ε。根据实验数据作出了预变形产生的位错强化随着位错密度的关系曲线图,由此得到了合金热轧板固溶态的位错强化值为67 MPa,占合金固溶态总强度的27%,获得了合金位错强化与位错密度的关系:σd=150ρ1/2 。 The quantitative research of deformation, dislocation density and aging strengthening in Al-Cu-Mg alloy during artificial aging was studied by tensile test, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The results indicate that the pre-deformation increased the dislocation density of the alloy hot-rolled plate, refined the size of precipitated phase, improved the strength of alloy and reduced the time of peak aging. The dislocation density measured by TEM line intersection method and XRD profile method becomes higher with the increase of predeformation and the increase rate is gradually decreased. Finally it tends to saturation, and the function model of dislocation density and pre-deformation is established:ρ=1.28-1.08e-0.7ε . According to the experimental data, the curve of dislocation strengthening caused by pre-deformation and dis-location density is made, therefore, the dislocation strength of 67 MPa of the alloy hot-rolled plate at solid solution state is obtained, which accounts for 27% of strength of the alloy at solid solution state. And we obtain the relationship between dislocation strengthening and dislocation density: σd=150ρ1/2 .
出处 《材料科学》 2015年第3期126-133,共8页 Material Sciences
基金 国家重点基础研究发展规划(973计划)项目(编号:2012CB619500) 国家自然科学基金(编号:51375503)。
  • 相关文献

参考文献3

二级参考文献32

  • 1李劲风,郑子樵,李世晨,任文达,陈文敬.铝合金时效成形及时效成形铝合金[J].材料导报,2006,20(5):101-103. 被引量:34
  • 2王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,1999.
  • 3HOLMAN M C. Autoclave age forming large aluminium aircraft panels[J]. Journal of Mechanical Work Technology, 1989, 20: 477-488.
  • 4ZHU A W, STARKE E A. Materials aspects of age-forming of Al-xCu alloys [J]. Journal of Material Processing Technology, 2001, 117: 354-358.
  • 5HOSFORD W F, AGRAWAL S P. Effect of stress during aging on the precipitation of θ' in Al-4 wt pct Cu [J]. Metall Trans, 1975, 6A: 487-491.
  • 6ZHU A W, CHEN J, STARKE JR E A. Precipitation strengthening of stress-aged Al-x Cu alloys [J]. Acta Materialia, 2000, 48 (9): 2239-2246.
  • 7STARINK M J, SINCLAIR I, GAO N, et al. Development of new damage tolerant alloys for age-forming [J]. Mater Sci Fo rum, 2002, 396-402: 601-606.
  • 8STARINK M J, GAO N, KAMP N, et al. Relations between microstructure precipitation age-formability and damage tolerance of Al-Cu-Mg Li(Mn, Zr, Sc) alloys for age forming [J]. Mater Sci Eng, 2006, 418A: 241-249.
  • 9BAKAVOS D, PRANGNELL P B, BES B. The effect of silver on microstructurai evolution in two 2xxx series Al-alloys with a high Cu: Mg ratio during ageing to a T8 temper[J]. Materials Science and Engineering, 2008, 491: 214-223.
  • 10LUMLEY R N, POLMEAR I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu Mg-Ag alloy[J]. Scripta Materialia, 2004, 50(9): 1227-1231.

共引文献37

同被引文献56

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部