期刊文献+

MCFs的碳化对其葡萄糖氧化酶吸附性能的影响 被引量:1

Carbonization of Mesostructured Cellular Foams and Its Effect on the Glucose Oxidase Adsorption Performance
下载PDF
导出
摘要 本文以三嵌段共聚物聚氧乙烯–聚氧丙烯–聚氧乙烯(Pluronic P123)及三甲苯(TMB)为模板剂及扩孔剂,制备出介孔硅泡沫分子筛。以糠醇为碳源,运用硬模板法对介孔硅泡沫分子筛进行碳化,得到介孔碳泡沫分子筛。采用SEM观察、TEM观察及氮气吸附等手段对碳化后的介孔碳泡沫分子筛及之前的硅模板的外部形貌、粒径及孔道结构进行表征。结果表明,经过碳化后的介孔泡沫分子筛较好地保持了之前模板剂的颗粒尺寸和外部形貌。碳化后的介孔泡沫分子筛其窗口孔径、胞体孔径和孔容都有所下降,但比表面积却有所增大。将所制备的介孔碳泡沫分子筛和硅基模板剂分别用于葡萄糖氧化酶的负载,碳化后的介孔材料对葡萄糖氧化酶的吸附量大于硅基模板,表明拥有较小窗口粒径、较小胞体孔径和孔容的介孔碳泡沫分子筛表现出更优异的葡萄糖氧化酶负载性能,有望成为优良的酶载体材料。 The mesostructured cellular foams (MCFs) were synthesized using microemulsion templating, in which the nonionic triblock copolymer surfactant Pluronic P123 was served as template and 1,3,5-trimethylbenzene (TMB) as organic swelling agent. Then, by using mesostructured cellular foam silica as templates, furfuryl alcohol as carbon precursors, the carbon-based mesostructured cellular foam was prepared. The exterior morphologies and pore structures of the samples were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM) and nitrogen adsorption. It was found that mesostructured cellular foams kept its original particle size and external morphology after carbonization, and possessed the smaller windows and cell diameters and the smaller pore volumes, but had larger specific surface area. Both carbon-based and silicon-based mesocellular foams were used as the carriers for immobilization of glucose oxi-dase. The loading amounts on carbonaceous mesocellular foams were much higher than on the corresponding silicon templates. We can conclude that carbon-based mesocellular foam with smaller particle size, smaller window size and smaller pore volume had a better glucose oxidase adsorption performance. It might be served as the prospective enzyme carrier material.
出处 《材料科学》 2016年第3期189-196,共8页 Material Sciences
  • 相关文献

参考文献1

二级参考文献31

  • 1[3]COONEY M J, ROSCHI E, MARISON I W, et al. Physiologic studies with the sulfate-reducing bacterium desulfovibrio desulfuricans: Evaluation for use in a biofuel cell [J]. Enzyme Microb Technol, 1996, 18: 358-365.
  • 2[4]KARYAKIN A A, MOROZOV S V, KARYAKINA E E, et al.Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase [J]. Electrochem Commun, 2002, 4: 417-420.
  • 3[5]PALMORE G T R, KIM H H. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a bio fuel cell [J].J Electroanal Chem, 1999, 464:110-117.
  • 4[6]IKED A T, KANO K. Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosen sors and biofuel cells [J]. Biochimica et Biophysica Acta, 2003,1647: 121-126.
  • 5[7]DAWAR S, BEHERA B K, MOHANTY P. Development of a lowcost oxy-hydrogen bio-fuel cell for generation electricity using nos toc as a source of hydrogen [J]. Int J Energy Res, 1998, 22:1 019-1 028.
  • 6[8]GIL G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell [J].Biosens Bioelectron, 2003, 18: 327-334.
  • 7[9]PARK D H, ZEIKUS J G. Electricity generation in microbial fuel cell using neutral red as an electronophore [J]. Appl Environ Microbiol, 2000, 66(4): 1 292-1 297.
  • 8[10]BARTON S C, KIM H H, BINYAMIN G, et al. Electroreduction of O2 to water on the "wired" laccase cathode [J]. J Phys Chem B,2001, 105(47): 11 917-11 921.
  • 9[11]KATZ E, WILLNER I, KOTLYAR A B. A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surface [J].J Electroanal Chem, 1999, 479: 64-68.
  • 10[12]KIM H J, PARK H S, HYUN M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens [J]. Enzyme Microb Technol, 2002, 30: 145-152.

共引文献32

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部