期刊文献+

面向CFRP的多关联层特征提取方法

Feature Extraction Method of Multi-Correlation Layer for CFRP
下载PDF
导出
摘要 碳纤维增强复合材料(CFRP)广泛应用于各大工业领域,其生产和制造技术已经成为我国战略新兴产业的重要支柱之一。然而,关于复合材料疲劳损伤检测的研究至今仍缺乏成熟的理论体系。因此,对于CFRP检测方法的研究受到了广泛的关注。本文针对该材料,将深度学习引入检测系统,利用自编码器提取CFRP缺陷特征,实现缺陷识别并按照位置分类的目的。实验结果表明,自编码器通过提取CFRP缺陷的数据特征不仅对缺陷有很好的辨识能力,而且可以应用于缺陷分类,效果良好。 CFRP is widely used in various industrial fields. Its production and manufacturing technology has become one of the important pillars of strategic emerging industries in China. However, the re-search on fatigue damage detection of composite materials is still lack of mature theoretical system. Therefore, the research on the CFRP detection method has been widely concerned. In this paper, deep learning is introduced into the detection system, the CFRP defect characteristics are extracted by Auto-Encoder, and the purpose of defect identification and location classification is realized. The experimental results show that the Auto-Encoder can not only identify the defects but also can be used in defect classification by extracting the data characteristics of CFRP defects.
作者 戴斌 张荣华
出处 《材料科学》 CAS 2021年第4期341-349,共9页 Material Sciences

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部