期刊文献+

镍铁双金属硒化物的制备及其电催化性能

Preparation and Electrocatalytic Performance of Nickel-Iron Bimetallic Selenide
下载PDF
导出
摘要 本文采用两步水热法,以镍铁层状双金属氢氧化物(NiFe LDH)为前驱体,选择二氧化硒作为硒化反应的硒源,无害无污染的柠檬酸钠作为硒化反应的还原剂,在泡沫镍(NF)上制备了具有微观片状结构的不同镍铁投料比的镍铁硒化物(即NiFeSe2/NF)。在1.0 M KOH中,NiFeSe2/NF具有优良的析氢(HER)和析氧(OER)性能,可用作双功能电催化剂。在所得的不同镍铁比样品中,Ni1.5Fe0.5Se2/NF具有最佳的HER催化活性,在10 mA∙cm−2下对应过电位大小为126.3 mV。此外,Ni1.33Fe0.67Se2/NF是OER催化性能最优越的样品,在50 mA∙cm−2下对应过电位为295 mV,Tafel斜率低至67.4 mV∙dec−1。此外,Ni1.5Fe0.5Se2/NF的全解水性能优良,在10 mA∙cm−2下,对应电压低至1.53 V。本文为合成具有双功能电催化活性的硒化物提供了一种更安全、简便的新途径。 In this paper, a two-step hy-drothermal method was used to prepare nickel-iron selenide (NiFeSe2/NF) with different nick-el-iron feed ratios on Nickel Foam (NF), using Nickel-iron Layered Double Hydroxide (NiFe LDH) as the precursor, SeO2 as the selenium source and harmless and non-polluting sodium citrate as the reducing agent of the selenization reaction. NiFeSe2/NF has excellent electrocatalytic performance for both Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in 1.0 M KOH electrolyte, and can be used as a bifunctional electrocatalyst. Among samples with different nick-el-iron ratios, Ni1.5Fe0.5Se2/NF shows the best catalytic activity for HER, with the corresponding overpotential of 126.3 mV at 10 mA∙cm−2. Moreover, Ni1.33Fe0.67Se2/NF exhibits the most remarkable catalytic performance for OER, corresponding to the overpotential of 295 mV at 50 mA∙cm−2, and a Tafel slope as low as 67.4 mV∙dec−1. In addition, Ni1.5Fe0.5Se2/NF has optimal performance for overall water splitting, and the corresponding voltage is as low as 1.53 V at 10 mA∙cm−2. This paper pro-vides a safer and simple method for synthesizing bimetallic selenides with bi-functional electrocat-alytic activity.
出处 《纳米技术》 CAS 2022年第4期362-370,共9页 Hans Journal of Nanotechnology
  • 相关文献

参考文献1

二级参考文献20

  • 1吴伟,贺全国,陈洪,汤建新,聂立波.Fe_3O_4磁性纳米粒子的超声包金及其表征[J].化学学报,2007,65(13):1273-1279. 被引量:25
  • 2Nealon G L, Donnio B, Greget R, et al. Magnetism in gold nanoparticles [J]. Nanoscale, 2012, 4 ( 17 ) : 5244- 5258.
  • 3Huang H, Zhou Y, Liu H. Recent advances in the gold- catalyzed additions to C -C multiple bonds[J]. Beilstein Journal of Organic Chemistry, 2011, 7 ( 1 ) 897-936.
  • 4Loekitowati Hariani P, Faizal M, Ridwan, et al. Synthe- sis and properties of Fe304 nanoparticles by co-precipita- tion method to removal proeion dye [J]. International Journal of Environmental Science and Development, 2013, 4(3) : 336-340.
  • 5Li X M, Xu G, Liu Y, et al. Magnetic Fe304 nanoparti- cles: synthesis and application in water treatment [J]. Nanoscience & Nanotechnology-Asia, 2011, 1 ( 1 ) : 14- 24.
  • 6Wei Y, Han B, Hu X, et al. Synthesis of Fe3O4 nanop- articles and their magnetic properties[J]. Procedia Engi- neering, 2012, 27: 632-637.
  • 7Mezni A, Balti I, Mlayah A, et al. Hybrid Au - Fe304 nanoparticles: plasmonic, surface enhanced Raman scat- tering, and phase transition properties [J]. The Journal of Physical Chemistry C, 2013, 117(31) : 16166-16174.
  • 8Yu H, Chen M, Rice P M, et al. Dumbbell-like bifunc- tional Au - Fe304 nanoparticles [J]. Nano Letters, 2005, 5(2) : 379-382.
  • 9Qiu j D, Xiong M, Liang R P, et al. Synthesis and char- acterization of ferrocene modified Fe3 04 @ Au magnetic nanoparticles and its application[J]. Biosensors and Bio- electronics, 2009, 24 (8) : 2649-2653.
  • 10Wei Q, Xiang Z, He J, et al. Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemi- cal immunosensors [J]1. Biosensors and Bioelectronics, 2010, 26(2): 627-631.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部