期刊文献+

基于粒子法的熔融物碎片在铅冷却剂内运动行为模拟

Simulation of Molten Debris Transportation Behavior in Lead Coolant Based on Mps Method
下载PDF
导出
摘要 研究严重事故工况下堆芯熔融物在一回路内的迁移及分布特性对于制定严重事故缓解措施及应急策略具有一定意义。本文通过定义熔融物颗粒的产生条件、入口速度、重力、粘性力、粒子数密度计算模型,完成粒子法程序MPS中固体颗粒物及铅/铅铋流体计算模型的开发。利用改进后的程序计算Zr-4合金碎片及二氧化铀碎片在不同的冷却剂流速及冷却剂粘性条件下的运动行为,分析熔融物密度、冷却剂流速、冷却剂粘性对熔融物迁移行为的影响,初步验证了应用粒子法开展熔融物运动行为研究的可行性,为后续研究及实验验证提供了基础。 Investigation on the migration and distribution characteristics of the core molten debri in primary loop under severe accident is significant for the development of accident mitigation and emergency response strategies. Solid debris and lead/lead and bismuth calculation model is developed through defining the debri generation conditions, inlet velocity, gravity, viscous force, and particle number density model. Transportation behavior of Zr-4 alloy debri and uranium dioxide in lead coolant under different coolant velocity and viscosity are simulated with modified MPS code;effects of debri density, coolant mass flow rate and viscosity on transportation of debri are analyzed. Feasi-bility of the application of MPS method in the investigation of molten debri transportation behavior in lead coolant is preliminarily verified, which also provides the basis for subsequent further re-search and experimental validation.
出处 《核科学与技术》 2017年第3期134-141,共8页 Nuclear Science and Technology
基金 国际原子能机构资助项目(R18971)。
  • 相关文献

参考文献3

二级参考文献29

  • 1HARLOW F H, WELCH J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J].Phys Fluids, 1965, 8(2): 2 182-2 189.
  • 2GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars[J]. Mon Not R Aston Soc, 1977, 181: 375-389.
  • 3KOSHIZUKA S, TAMAKO H, OKA Y. A particle method for incompressible viscous flow with fluid fragmentation[J]. Comput Fluid Dyn, 1995, 181(4): 29-46.
  • 4陆道纲,高晓安.液面晃动三维程序的开发及其在储液容器流固耦合分析中的应用[C]//第十一届全国反应堆结构力学会议论文专辑.北京:原子能出版社,2000:152-158.
  • 5AMSDEN A A, HARLOW F H. A simplified MAC technique for incompressible fluid flow calculations[J]. J Comp Phys, 1970, 6 (2): 322-325.
  • 6TAKIZAWA A, KOSHIZUKA S, KONDO S. Generalization of physical component boundary fitted coordinate (PCBFC) method for the analysis of free surface flow[J]. Int J Num Method Fluids, 1992, 15:1 213-1 237.
  • 7Koshizuka S, Oka Y. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid[J].Nuclear Science and Engineering, 1996, 123(3): 421-434.
  • 8Tian Wenxi, Ishiwatari Yuki, Oka Yoshiaki. Numerical Simulation on Void Bubble Dynamics Using Moving Particle Semi-implicit Method[J]. Nuclear Engineering and Design, 2009, 239(11): 2317-2325.
  • 9Tian Wenxi, Ishiwatari Yuki, Oka Yoshiaki. Numerical Computation of Thermally Controlled Steam Bubble Condensation Using Moving Particle Semi-implicit (MPS) Method[J]. Annals of Nuclear Energy, 2010, 37(1): 5-15.
  • 10Grace J R. Shapes and Velocities of Bubbles Rising in Infinite Liquids[J]. Transaction of the Institute of Chemi- cal Engineering, 1973, 51: 116-120.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部