期刊文献+

一类齿轮传动系统的簇发振荡现象研究

Study on the Bursting Oscillations Phenomenon of a Kind of Gear Transmission System
下载PDF
导出
摘要 本文以带有一齿侧间隙的非光滑齿轮传动系统为研究对象,系统被非光滑分界面分成不同的子系统,当激励频率远小于系统固有频率时,会产生诸如簇发振荡等特殊行为。将整个激励项看做慢变参数,激励系统转化为广义自治系统也即快子系统,分析快子系统平衡点的稳定性以及分岔条件,并运用快慢分析法和转换相图揭示了簇发振荡的动力学机理。考虑无量纲一齿侧间隙、啮合频率、啮合刚度和波动幅值对齿轮传动的影响,借助分岔图、相图、庞加莱映射以及最大李雅普诺夫指数来分析其系统的动力学机制。研究结果发现无量纲啮合频率、啮合刚度和波动幅值对系统有一定的影响,研究结果可以为齿轮传动系统安全设计提供参考。 Taking a non-smooth gear transmission system with a toothed clearance as the research object, the system is divided into different subsystems by non-smooth interfaces. When the excitation frequency is far less than the natural frequency of the system, special behaviors such asbursting oscillation will occur. The whole excitation is regarded as a slow parameter, and the excitation system is transformed into a generalized autonomous system, that is, a fast subsystem. The stability and bifurcation conditions of the equilibrium point of the fast subsystem are analyzed, and the dynamic mechanism of bursting oscillation is revealed by using the fast and slow analysis method and transformation phase diagram. Considered the impact of dimensionless toothed clearance, meshing frequency, meshing stiffness and fluctuation amplitude on the gear transmission, the bifurcation mechanism and the bursting oscillation of the system are based on bifurcation diagrams, Lyapunov exponents and phase portraits, poincare maps. The results show that the dimensionless meshing frequency, meshing stiffness and fluctuation amplitude have some effect on the system. The research results can provide reference for the safety design of gear transmission system.
作者 杨园 钱有华
出处 《声学与振动》 2021年第4期153-165,共13页 Open Journal of Acoustics and Vibration
  • 相关文献

参考文献2

二级参考文献21

  • 1郜志英,沈允文,刘梦军.Dark-lines in bifurcation plots of nonlinear dynamic systems[J].Chinese Physics B,2005,14(7):1359-1364. 被引量:3
  • 2郜志英,沈允文,董海军,刘晓宁.齿轮系统参数平面内的分岔结构[J].机械工程学报,2006,42(3):68-72. 被引量:9
  • 3SHEN Jianhe,LIN Kechang,CHEN Shuhui,et al.Bifurcations and route to chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method[J].Nonlinear Dynamics,2008,52(4):403-414.
  • 4BAHAR S.Patterns of bifurcation in iterated function systems[J].Chaos,Solitons and Fractals,1996,7(2):205-210.
  • 5RASMUSSEN M.Nonautonomous bifurcation patterns for one-dimensional differential equations[J].Journal of Differential Equations,2007,234(1):267-288.
  • 6REGA Giuseppe,ALAGOIO Rocco.Experimental unfolding of the nonlinear dynamics of a cable-mass suspended system around a divergence-Hopf bifurcation[J].Journal of Sound and Vibration,2009,322(3):581-611.
  • 7ZHENG Baodong,ZHENG Huifeng.Bifurcation analysis in delayed feedback Jerk systems and application of chaotic control[J].Chaos,Solitons and Fractals,2009,40(3):1190-1206.
  • 8DAVID Alexandra.Local bifurcation analysis and control of nonlinear dynamical systems with time-periodic coefficients[D].Auburn:Auburn University,2000.
  • 9GALLAS J A C.Structure of the parameter space of the Henon map[J].Physical Review Letters,1993,70(18):2714-2717.
  • 10BONATTO C,GARREAU J C,GALLAS J A C.Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser[J].Physical Review Letters,2005,95(14):143905-1-143905-4.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部