期刊文献+

渭河下游户县段垂向潜流通量动态特征研究

Dynamic Characteristic of Vertical Hyporheic Flux in Huxian County, the Downstream of Weihe River, China
下载PDF
导出
摘要 河流的潜流带是一个特殊的水文地质体,有其独特的水动力机制和生态作用。潜流通量是其中一项重要指标,在一定程度上能够反映地表水和地下水的相互作用关系。本文采用波动振幅衰减法计算潜流通量,利用温度示踪技术,重点研究潜流通量动态变化特征及潜流通量在时间空间上的分布特征。以陕西西安户县渭河段为研究区,进行河床浅层沉积物潜流通量的计算。结果表明:监测时段内研究区主要为河水补给地下水,不同深度平均潜流通量变化范围为9.7 ×10?7~2.9 ×10?6 m/s。潜流通量随潜流带深度增大,潜流通量数值随时间波动幅度减小。潜流通量数值垂向分布上随时空变化具有差异性。 Hyporheic zone is a special hydrogeological body, which has unique hydrodynamic mechanism and ecological function;hyporheic flux, one of the important indexes, can reflect the relationship between surface water and groundwater. The study uses wave amplitude attenuation method to calculate the hyporheic zone vertical hyporheic flux. On the basis of temperature tracing theory and calculation methods, we study the relationship between hydroheic conditions and variation characteristics as well as temporal and spatial distribution characteristics of subsurface flux. We calculated the amount of hydrodynamic exchange in the hyporheic zone of the Huxian County section in Weihe River as a case study. Results show that surface water recharges groundwater mainly in this research area. Mean hyporheic flux changed from 9.7 ×10?7 m/s to 2.9 ×10?6 m/s. As the depth increases, fluctuation range of hyporheic flux became small over the time. The vertical distribution of subsurface flux varies with time and space.
机构地区 长安大学
出处 《自然科学》 2017年第3期293-301,共9页 Open Journal of Nature Science
基金 长安大学2017年大学生创新创业训练计划项目(201710710161)。
  • 相关文献

参考文献6

二级参考文献117

  • 1滕彦国,左锐,王金生.地表水-地下水的交错带及其生态功能[J].地球与环境,2007,35(1):1-8. 被引量:32
  • 2TUFENKJI N,MILLER G F,RYAN J N,et al.Transport of cryposoridium oocysts in porous media:rale of straining and physicochemical filtration[J].Environmental Science and Technology,2004,38(22):5932-5938.
  • 3PACKMAN A I,BROOKS N H,MORGAN J J.Experimental techniques for laboratory investigation of clay colloid transport and filtration in a stream with a sand bed[J].Water,Air,and Soil Pollution,1997,99:113-122.
  • 4PACKMAN A I,SALEHIN M,ZARAMELLA M.Hyporheic exchange with gravel beds:basic hydrodynamic interactions and bedform-induced advective flows[J].Journal of Hydraulic Engineering,2004,130(7):647-651.
  • 5ELLIOTT A H,BROOKS N H.Transfer of nonsorbing solutes to a streambed with bed forms:theory[J].Water Resources Research,1997,33(1):123-136.
  • 6PACKMAN A I,MACKAY J S.Interplay of stream-subsurface exchange,clay particle deposition,and streambed evolution[J].Water Resources Research,2003,39 (4):1097.
  • 7RODIER E,DODDS J.An experimental study of the transport and capture of colloids in porous media by a chromatographic technique[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1993,73(10):77-87.
  • 8YAN C,DADOO R,ZHAO H,et al.Capillary electrochromatography:analysis of polycyclic aromatic hydrocarbons[J].Analytical Chemistry,1995,67(13):2026-2029.
  • 9McCAULOU D R,BALES R C,McCarthy J F.Use of short-pulse experiments to study bacteria transport through porous media[J].Journal of Contaminant Hydrology,1994,15(1/2):1-14.
  • 10PACKMAN A I,BROOKS N H,MORGAN J J.A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms[J].Water Resources Research,2000,36(8):2351-2362.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部