摘要
针对一般统计方法的不足,提出模糊聚类和数据挖掘方法在数据分析中的应用。概要介绍了两种智能分析方法的基本原理,并通过具体案例给出两种分析方法的实验结果,比较了各自的特点。特别提出本文所作的先做聚类分析,再在聚类结果的基础上进行数据挖掘的优势。具有较强的启发性和工程应用参考价值。
In view of the deficiency of general statistical methods, this paper presents the application of fuzzy clustering and data mining methods in data analysis. This paper introduces the basic principles of the two kinds of intelligent analysis methods, gives the experimental results of two kinds of analysis methods through specific cases, and compares their characteristics. In this paper, we put forward the advantages of data mining based on clustering results. It has a strong heuristic and engineering application reference value.
出处
《运筹与模糊学》
2016年第4期115-121,共7页
Operations Research and Fuzziology
基金
河南省高等教育教学改革研究项目“大学计算机基础分级分类教学模式研究(2014SJGLX143)”。