期刊文献+

基于BP神经网络的抗乳腺癌候选药物预测

Prediction of Anti-Breast Cancer Drug Candidate Based on BP Neural Network
下载PDF
导出
摘要 目前,乳腺癌已成为世界上致死率最高的癌症之一。据研究表明,通过调节雌激素受体亚型(ERα)活性可以控制人体内的雌激素水平,人体内的雌激素水平与乳腺癌的发展密切相关。而利用可以拮抗ERα活性的化合物有极大的可能可以治疗乳腺癌疾病,比如,临床治疗乳腺癌的经典药物他莫昔芬和雷诺昔芬就是ERα拮抗剂。本文基于化合物对ERα活性和化合物分子描述等已有数据,建立一个用于预测化合物对ERα生物活性的定量预测模型,然后利用随机森林和皮尔逊相关系数对影响生物活性最大的变量进行筛选降维,利用降低维数后的变量,搭建BP神经网络,构建预测模型。最后通过测试得到我们的模型预测效果好,泛化能力强,不容易发生过拟合。并对所提出的预测模型进行展望与分析。 Breast cancer has become one of the world’s most deadly cancers. Studies have shown that estrogen levels in the human body, which are closely associated with the development of breast cancer, can be controlled by regulating the activity of the estrogen receptor sub-type (ERα). Therefore, the use of compounds that antagonize ERα activity has great potential to treat breast cancer diseases. For example, tamoxifen and raloxifene, the classic drugs in clinical treatment of breast cancer, are ERα antagonists. Based on compounds of ER alpha activity and molecular description of existing data, set up a used to predict compounds quantitative prediction model of ER alpha biological activity, and then use random forests and Pearson correlation coefficient of the biggest variables to affect the biological activity screening dimension reduction, after using the lower dimension variable and building a BP neural network, forecast model was constructed. Finally, through testing, our model has good prediction effect, strong generalization ability is not prone to overfitting. The prediction model is prospected and analyzed.
作者 张原浩
出处 《运筹与模糊学》 2022年第2期253-261,共9页 Operations Research and Fuzziology
  • 相关文献

参考文献7

二级参考文献60

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2Fan J P,Yau D K Y.Automatie image segmentation by integrating color-edge extraction and seeded region growing[J].IEEE Transactions on Image Proeessing,2001, 10(10) : 1454-1466.
  • 3Shih F Y,Cheng Shou-xian.Automatic seeded region growing for color image segmentation[J].Image and Vision Computing,2005,23:877-886.
  • 4Chen T,Metaxas D.A hybrid framework for 3D medical image segmentation[J].Medical Image Analysis,2005,9(6) 547-565.
  • 5Chen G,Tian G.A hybrid boundary detection algorithm based on watershed and snake[J].Pattern Recognition Letters,2005,26(9): 1256-1265.
  • 6Bossanyi E A.Short-term wind prediction using Kalmanfilters[J].Wind Engineering,1985,9(1):1-8.
  • 7Mohamed A M,Shafiqur R,Talal O H.A neural networks approach for wind speed prediction[J].Renewable Energy,1998,13(3):345-354.
  • 8Pai Pingfeng,Hong Weichiang.Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms[J].Electric Power Systems Research,2005,74(3):417-425.
  • 9Lexiadis M A,Dokopoulo S P,Samanoglou S H,et al.Short term forecasting of wind speed and related electrical power[J].Solar Energy,1998,63(1):61-68.
  • 10Sandhya S.史晓霞译.神经网络在应用科学和工程中的应用—从基本原理到复杂的模式识别[M].北京:机械工业出版社,2009:7.

共引文献308

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部