期刊文献+

多项式系数的齐次微分方程解的级与零点

The Order and Zeros of the Solutions of the Differential Equation with Polynomial Coefficients
下载PDF
导出
摘要 本文研究的是齐次线性微分方程f(k)+Ak-1f(X-1)+...+A0f=0的解的性质,其中系数Aj 是多项式,As 起控制作用,在满足某些条件的情况下,我们得到了:该方程的若干个线性无关解的级与零点收敛指数跟As 有紧密联系。 This paper investigates the properties of solutions to a linear differential equation f(k)+Ak-1f(X-1)+...+A0f=0 , whose coefficients Aj are polynomial. If As plays a main role and satisfy some particular conditions, we draw a conclusion that As make a compact connection with the solutions of this equation.
出处 《理论数学》 2011年第3期214-223,共10页 Pure Mathematics
  • 相关文献

参考文献1

二级参考文献17

  • 1Amemiya, I. & Ozawa, M., Non-existence of finite order solutions of w" + e-zw′ + Q(z)w = 0, Hokkaido Math. J., 10(1981), 1-17.
  • 2Chen Zongxuan & Yang Chungchun, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22(1999), 273-285.
  • 3Chen Zongxuan, The growth of solutions of the differential equation f" + e-zf' + Q(z)f = 0 (in Chinese), Science in China, Series A, 31(2001), 775-784.
  • 4Frei, M., Uberdiesubnormalenlosungenderdifferentialgleichungw"+e-zw'+(konst.)w = 0, Comment.Math. Helv., 36(1962), 1-8.
  • 5Gundersen, G., On the question of whether f" + e-zf' + B(z)f = 0 can admit a solution f 0 of finite order, Proc, R.S.E., 102A(1986), 9-17.
  • 6Gundersen, G., Finite order solutions of second order linear differential equations, Trans. Amer. Math.Soc., 305(1988), 415-429.
  • 7Gundersen, G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc., 37:2(1988), 88-104.
  • 8Hille, E., Ordinary differential equations in the complex domain, Wiley, New York, 1976.
  • 9Hayman, W., Meromorphic function, Clarendon Press, Oxford, 1964.
  • 10Hayman, W., The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math.Bull., 17(1974), 317-358.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部