期刊文献+

一类新的非连续函数积分不等式及其应用 被引量:3

A New Class of Integral Inequality for Discontinuous Function and Its Application
下载PDF
导出
摘要 Gronwall 型积分不等式是研究微分方程和积分方程解的存在性、有界性、唯一性、稳定性和不变流型等定性性质的重要工具。本文建立了一类新的非连续函数积分不等式,并给出未知函数的上界估计。我们的结果可作为研究某些脉冲微分方程和积分方程定性理论的重要工具。 Being an important tool of Gronwall integral inequality in the study of existence, uniqueness, boundedness, stability, Invariant manifolds and other qualitative properties of solutions of differential equations and integral equation. In this paper, we give the upper bounds estimation of unknown function of a new class of integral inequality for discontinuous function. Our result can be important tools to study qualitative theory of some impulsive differential equations and impulsive integral equations.
出处 《理论数学》 2013年第1期4-8,共5页 Pure Mathematics
基金 广西自然科学基金项目(2012GXNSFAA053009) 广西教育厅科研项目(201204LX423) 百色学院一般科研项目(2011KB08) 百色学院教改项目(2012JG09)。
  • 相关文献

参考文献3

二级参考文献38

  • 1周玛莉,吴行平.Gronwall积分不等式的推广[J].西南师范大学学报(自然科学版),2005,30(4):760-762. 被引量:3
  • 2钟五一,杨必成.关于反向Hardy-Hilbert积分不等式的推广[J].西南大学学报(自然科学版),2007,29(4):44-48. 被引量:16
  • 3Borysenko S D. Integro-sum inequalities for functions of many independent variables[J]. Differential Equations, 1989,25(9):1638-1641.
  • 4Borysenko S D. Intergro-Sum inequalities and their use in the study of impulse systems in: Proceeding of Ⅵ internat[J]. M Kiravchuk Conf,1997.41-53.
  • 5Borysenko D S. About One Integral Inequality for Piece-wise Continuous Functions[M]. in: Proc X Int Kravchuk Conf Kyiv,2004,323.
  • 6Borysenko S D, Ciarletta M, Iovane G. Integro-sum inequalities and motion stability of systems with impulse perturbations [J]. Nonlinear Anal, 2005,62 : 417-428.
  • 7Borysenko S D, Iovane G. About Estimates of Solutions for Nonlinear Hypertolic Equations with Impulsive Perturbations on Some Hypersurfaces[M]. University of Salerno, March, 2006,7.
  • 8Yuan Gong Sun. On retarded integral inequalities and their applications[J]. J Math Anal Appl, 2005,301 : 265-275.
  • 9Iovane G. Some new integral inequalities of Bellman-Bihari type with delay for discontinous functions [J]. Nonlinear Analysis, 2007,66 : 498-508.
  • 10Gallo A, Piccirillo A M. About new analogies of Gronwall-Bellman-Bihari type inequalities for discontinuous functions and estimated solution for impulsive differential systems[J]. Nonlinear Analysis,2007,67:1550-1559.

共引文献14

同被引文献5

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部