期刊文献+

非线性差分方程X<sub>n</sub>=qx<sub>n-1</sub><sup style="margin-left:-12px;">-1</sup>+px<sub>n-2</sub>解的有界性

On Boundedness of the Nonlinear Difference Equation X<sub>n</sub>=qx<sub>n-1</sub><sup style="margin-left:-12px;">-1</sup>+px<sub>n-2</sub>
下载PDF
导出
摘要 在这篇文章中,我们研究了一类非线性差分方程 Xn=qxn-1-1+pxn-2解的有界性。 In this paper, we consider the nonlinear difference equation Xn=qxn-1-1+pxn-2 and the boundness of its solutions is obtained.
出处 《理论数学》 2013年第4期254-256,共3页 Pure Mathematics
基金 四川省基础研究计划(2011JYZ002) 西南交通大学中央高校基本科研业务费专项资金项目(SWJTU12ZT13) 西南交通大学大学生科研训练项目(SRTP121204)。
  • 相关文献

参考文献1

二级参考文献9

  • 1AGARWAL R P. Difference Equations and Inequalities[C]. Theory, Methods, and Applications. 2nd ed. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 228. New York: Marcel Dekker, 2000.
  • 2AMLEH A M. On the recursive sequence Xn+1 =α + Xn-1 (Xn)^-1 [J]. Journal of Difference Equations and Applications, 2011,263: 790-798.
  • 3SHI B WANG Z C, YU J S. Asymptotic constancy of solutions of linear parabolic Volterra difference equations[J]. J Comput Matl Appl, 1996, 32: 65-77.
  • 4MORCHALO J. On convergence of solutions of a second order nonlinear difference equations[J]. J Appl Math Comput, 2003(12) 59-66.
  • 5YU J, WANG Z C. Asymptotic behavior and oscillation in neutral delay difference equations[J].J Funkc Ekvac, 1994, 37:241-248.
  • 6K S BERENHAUT, J D FOLEY. Quantitative dounds for the recursive sequence yn+1= A + yn (Yn-k)^-1, [J]. J Appl Math Letters, 2006, 19:983-989.
  • 7K S BERENHAUT, J D FOLEY. The global attractivity of the rational difference equation yn = 1 + Yn-k (Yn-m)^-1, [j]. j Proceedings of the American Mathematical Society, 2007, 235:1133-1140.
  • 8L BERG, On the asymptotics of nonlinear difference equations,[J]. J. Zeitschrift fur Analysis und ihre Anwendungen, 2002, 21:1061-1074.
  • 9DEVAULT, SCHULTZ S W. On the recursive sequenceyn+1 = A(xn)^-1+ (xn-2)^-1, [J].J Proc Amer Math Soc, 2008,126(11): 3257-3261.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部