期刊文献+

高维空间上扰动型Feigenbaum泛函方程的C<sup>1</sup>解

The C<sup>1</sup> Solution of Perturbation Feigenbaum Functional Equation on High-Dimensional Space
下载PDF
导出
摘要 本文利用矩阵分析的相关理论及Schauder不动点定理、Banach不动点定理及自同胚的相关性质研究了高维空间上扰动型Feigenbaum泛函方程的连续可微解的存在性、唯一性及稳定性。 In this paper, by using the related theory of matrix analysis, Schauder fixed point theorem and Banach fixed point theorem, also the related properties of the homeomorphism, the existence, uniqueness and stability of the continuously differentiable solution of perturbation Feigenbaum functional equation on high-dimensional space are researched.
出处 《理论数学》 2014年第6期233-240,共8页 Pure Mathematics
基金 广东省大学生科技创新重点培育项目 岭南师范学院2014年度大学生创新创业训练计划项目 全国大学生创新训练项目,编号:201410579006。
  • 相关文献

参考文献1

二级参考文献13

  • 1李晓培,邓圣福.DIFFERENTIABILITY FOR THE HIGH DIMENSIONAL POLYNOMIAL-LIKE ITERATIVE EQUATION[J].Acta Mathematica Scientia,2005,25(1):130-136. 被引量:9
  • 2张伟年.STABILITY OF THE SOLUTION OF THE ITERATED EQUATION sum from i=1 to n λ_if(x)=F(x)[J]Acta Mathematica Scientia,1988(04).
  • 3Colin J. Thompson,J. B. McGuire.Asymptotic and essentially singular solutions of the Feigenbaum equation[J]. Journal of Statistical Physics . 1988 (5-6)
  • 4Jean-Pierre Eckmann,Peter Wittwer.A complete proof of the Feigenbaum conjectures[J]. Journal of Statistical Physics . 1987 (3-4)
  • 5H. Epstein.New proofs of the existence of the Feigenbaum functions[J]. Communications in Mathematical Physics . 1986 (3)
  • 6Patrick J. McCarthy.The general exact bijective continuous solution of Feigenbaum’s functional equation[J]. Communications in Mathematical Physics . 1983 (3)
  • 7Lanford O E.A computer assisted proof of the Feigenbaum conjectures. Bulletin of the American Mathematical Society . 1987
  • 8Zhang W N.Discussion on the differentiable solutions of the iterated equation∑λifi (x)=F (x). Nonlinear Analysis:Theory,Mathods and Applications . 1998
  • 9Zhang W N.Solutions of equivariance for a polynomial-like iterated equation. Proceedings of the Royal Society of Edin-burgh Section A . 2000
  • 10Mestel B D,Osbaldestin A H,Tsygvintsev A V.Continued fractions and solutions of the Feigenbaum- Cvitanovic equation. Comptes Rendus de l Académie des Sciences . 2002

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部