摘要
本文研究马氏环境中非齐次马氏链泛函的滑动平均强极限性质。通过构造一列带参数且期望为1的随机变量,利用Borel-Cantelli引理来研究随机环境中马氏链的强极限定理,得到了马氏环境中马氏链泛函滑动平均的一个强极限定理,推广了若干已有结论。
In this paper we discuss the strong limit properties for moving average of functions of non-ho- mogeneous Markov chain in Markov environments. By constructing a sequence of random va-riables with one parameter and take 1 as the expectation, with the aid of the classic Borel-Cantelli lemma, we study the strong limit properties of Markov chain in random environments and obtain a strong limit theorem for moving average of functions of non-homogeneous Markov chain in Markov environments. Moreover, we generalize the existing results.
作者
程成
Cheng Cheng(School of Mathematics Physics Science and Engineering, Anhui University of Technology, MaAnshan Anhui)
出处
《理论数学》
2016年第1期81-87,共7页
Pure Mathematics
基金
安徽省自然科学基金(1408085MA04)
安徽工业大学研究生创新研究基金(2014132)。
关键词
马氏链
马氏环境
强极限定理
相对熵
Markov Chain
Markov Environments
Strong Limit Theorem
Relative Entropy