期刊文献+

有限生成无挠幂零群的4阶自同构 被引量:1

Finitely Generated Torsion-Free Nilpotent Groups Admitting an Automorphism of Order Four
下载PDF
导出
摘要 设G是有限生成无挠幂零群,α是G的4阶自同构且 是满射,则G的二阶导群G'' 包含在G的中心Z(G) 里且CG(α2) 是Abel群。 Let G be a finitely generated torsion-free nilpotent group and α an automorphism of order four of G. If the map G→G defined by is surjective, then the second derived subgroup G'' is included in the centre of G and CG(α2) is abelian.
作者 马晓迪 徐涛
出处 《理论数学》 2016年第5期437-440,共4页 Pure Mathematics
基金 河北省教育厅青年基金(QN2016184) 河北工程大学博士基金 河北工程大学研究生教育教学改革研究项目(161290140004)资助。
  • 相关文献

参考文献2

二级参考文献15

  • 1Robinson D J S. A course in the theory of groups (Second Edition) [M]. New York:Springer-Verlag, 1996.
  • 2Burnside W. Theory of groups of finite order (Second Edition) [M]. New York: DoverPublications Inc, 1955.
  • 3Neumann B H. Group with automorphisms that leave only the neutral element fixed[J]. Arch Math, 1956,7:1-5.
  • 4Thompson J. Finite groups with fixed-point-free automorphisms of prime order [J]. ProcNat Acad Sci, 1959, 45:578-581.
  • 5Higman G. Groups and rings having automorphisms without non-trivial fixed elements[J]. J London Math Soc, 1957,64:321-334.
  • 6Robinson D J S. Finiteness conditions and generalized soluble groups [M]. BerlinSpringer-Verlag, 1972.
  • 7Kargapolov M I. Merzljakov J I. Fundamentals of the theory of groups [M]. New YorkSpringer-Verlag, 1979.
  • 8Burnside W. Theory of Groups of Finite Order (Second Edition). New York: Dover Publications Inc., 1955.
  • 9Neumann B H. Group with automorphisms that leave only the neutral element fixed. Arch. Math., 1956, 7: 1-5.
  • 10Thompson J. Finite group with fixed-point-free automorphisms of prime order. Proc. Natl. Acad. Sci. USA, 1959, 45: 578-581.

共引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部