期刊文献+

Mathieu群与旗传递2-(v,k,λ)设计

Mathieu Groups and Flag-Transitive 2-(v,k,λ) Designs
下载PDF
导出
摘要 旗传递性是群作用在2-(v,k,λ) 设计上的重要性质之一。对满足一定条件的旗传递2-设计进行分类是一个比较有意思的问题。Dembowski已经证明了满足条件(v-1,k-1)≤2 的旗传递2-(v,k,λ) 设计的自同构群G是本原群。据此,本文在条件(v-1,k-1)≤2 下,研究自同构群旗传递且其基柱Soc(G)是五个Mathieu 群之一时的2-(v,k,λ) 设计的分类问题,得到了在同构意义下存在62个这样的设计。 Flag-transitivity is one of the important conditions that can be imposed on the automorphism group of a 2-(v,k,λ) design. The classification of flag-transitive 2-designs is an important problem in the algebraic combinatorial theory. Dembowski has proved that if G≤Aut(D) is flag-transitive and (v-1,k-1)≤2, then G is also point-primitive. According to this result, in this paper we completed the classification of this type of designs, with Soc(G) was one of five Mathieu groups Mi, where i=11, 12, 22, 23 or 24. We prove that there exists 62 2-designs satisfying the assumption.
作者 陈佳楠 周胜林 Jianan Chen;Shenglin Zhou(School of Mathematics, South China University of Technology, Guangzhou Guangdong)
出处 《理论数学》 2018年第1期47-54,共8页 Pure Mathematics
基金 广东省自然科学基金(编号:2017A030313001)。
关键词 2-设计 旗传递 基柱 Mathieu群 2-Design Flag-Transitive Socle Mathieu Group
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部