摘要
数学建模,即是对现实题目用数学常识成立模型,从而获得最优的决策方案。在这些现实问题中,例如:工场出产规划题目,合理使用材料题目,都可以创立优化模型。然后用最优化的方法解决,找出最优决策。题目不同,用到的方式也不一样。本文主要罗列了三种常用的优化模型:线性规划、非线性规划、以及整数规划模型。并通过一些实例详细说明。
The mathematical modeling, the model of the mathematical common sense of the real problem, obtains the optimal decision plan. In these practical problems, for example, the production plan of the factory, the reasonable use of the material topic, which can create the optimization model. And then we solve it in an optimal way find the optimal decision. They are different in different ways. This paper presents three commonly used optimization models;Linear programming, nonlinear programming, and integer programming model. Some examples are given in detail.
作者
王小春
Xiaochun Wang(Department of Mathematics, Taiyuan Normal University, Jinzhong Shanxi)
出处
《理论数学》
2018年第1期55-63,共9页
Pure Mathematics
关键词
最优化模型
线性规划模型
非线性规划模型
整数规划模型
Optimization Model
Linear Programming Model
Nolinear Programming Model
Integer Programming Model