期刊文献+

累积剩余熵的若干基本性质及其在股票分析中的应用

The Basic Properties of Accumulated Residual Entropy and Its Application in Stock Analysis
下载PDF
导出
摘要 在信息熵的基础上,我们进一步研究累积剩余熵的一些性质,并将累积剩余熵模型应用于风险度量中。再在实际应用中,选取8支股票,收集每日收盘价格数据,利用SPSS软件绘制累积剩余熵与标准差的关系图,得出累积剩余熵与标准差的线性关系,又因为累积剩余熵的适用范围比方差更广,即在度量风险中,累积剩余熵模型比方差更具有优势。 On the basis of information entropy, we further study some properties of the cumulative residual entropy, and the cumulative residual entropy model applied in risk measure. In practical applica-tions, the selection of eight stocks, collect the daily closing price data, using SPSS software to draw the cumulative residual entropy and the standard deviation of the diagram. It is concluded that the cumulative residual entropy and the standard deviation of the linear relationship, and because of the cumulative residual entropy of a broader scope than variance, namely in the risk measurement, the cumulative residual entropy model has more advantages than the variance.
作者 周丹 Dan Zhou(School of Mathematics & Physics Science and Engineering, Anhui University of Technology, Ma’anshan Anhui)
出处 《理论数学》 2018年第1期105-112,共8页 Pure Mathematics
基金 安徽工业大学研究生创新基金资助(2016137)。
关键词 累积剩余熵 风险度量 方差 Entropy Cumulative Residual Entropy Risk Measurement Variance
  • 相关文献

参考文献1

二级参考文献14

  • 1Szego G.Measures of risk[J].European Journal of Operational Research,2005,163:5-19.
  • 2Cover T M,Thomas J A.Elements of information theory[M].Wiley,New York,1991.
  • 3Sharpe W F.Investments[M].Englewood cliffs,NJ:Prentice-Hall,1985.
  • 4Salomon D.Data compression[M].NewYork:Springer-Verlag,1998.
  • 5Kullback S.Information theory and statistics[M].New York:Wiely,1959.
  • 6Dionisio A,Menezes R M.Endes D A.Uncertainty analysis in financial markets:can entropy be a solution[C].University of Essex,UK,2005 June 13.
  • 7Ebrahimi N,Maasoumi E,Soofi E S.Ordering univariate distributions by entropy and variance[J].Journal of Econometrics,1999,90(2):317-336.
  • 8Reesor R M,McLeish Risk D.Entropy and the transformations of distributions[D].preprint in Working Paper,2002-11,Bank of Canada.
  • 9Shannon C E.A mathematical theory of communication[M].Bell System Tech.J,1948,27:379-423,623-656.
  • 10Rao M,Chen Y,Vemuri B C,et al.Cumulative residual entropy:a new measure of information[J].IEEE Trans.Inf.Theory 2004,50(6):1220-1228.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部