期刊文献+

体积勾股定理的证明 被引量:9

The Proof of Volume Pythagorean Theorem
下载PDF
导出
摘要 用Cayley-Menger行列式证明:当四面体满足“对棱相等、或对棱的平方和相等”时,存在体积勾股定理:“该四面体的体积的平方等于所围的四个面外凸的直角四面体体积的平方和”,其公式为:V2ABCD=V2ABC4+V2ABD3+V2ACD2+V2BCD1(标注见:图1)。 The Cayley-Menger determinant is used to prove that when the tetrahedron satisfies“The same of opposite sides respective,or The same of the sum of squares of opposite sides”,there exists The Volume Pythagorean Theorem:“the square of the volume of the tetrahedron is equal to the sum of squares of the volumes of the four Right Angle Tetrahedrons by Surrounded by external”.The formula is:V2ABCD=V2ABC4+V2ABD3+V2ACD2+V2BCD1(the label is shown in Figure 1).
作者 蔡国伟
出处 《理论数学》 2019年第6期723-729,共7页 Pure Mathematics
  • 相关文献

参考文献1

二级参考文献2

共引文献9

同被引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部