期刊文献+

证明垂心四面体的内切球、4面和6棱旁切球半径坐标的算法——四维体积勾股定理的应用(公式五)

Algorithm for Proving the Radius Coordinates of the Inscribed Sphere and 4-Surfaces and 6-Edge Line Escribed Spheres of the Orthocentric Tetrahedron—Application of Pythagorean Theorem of Four-Dimensional Volume (Formula 5)
下载PDF
导出
摘要 正交4球心组成的垂心四面体,在欧氏3D坐标系中,仅用四球半径,计算内切球、4面6棱10个旁切球半径和球心坐标的同构公式,同时得出内切球球心与外接球球心的间距公式。 The orthocentric tetrahedron composed of orthogonal 4 spheres, in the Euclidean 3D coordinate system, uses only the radius of four spheres to calculate the isomorphic formula of the radius of the inscribed sphere and radius of the ten escribed spheres composed of the 4-surfaces and 6-edge line and the spheres center coordinates. The formula for the distance between the inscribed sphere center and the circumscribed sphere center is also got.
作者 蔡国伟
出处 《理论数学》 2019年第10期1148-1158,共11页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部