摘要
本文以代数曲面和空间代数曲线上的多元多项式插值问题的研究成果为基础,主要对二次代数曲面在沿球面的拼接问题进行研究,得出了用拉格朗日插值法定义在球面上的二次拼接点组的多项式分解方法,得到了一组满足沿球面进行二次代数曲面拼接时的二次拼接多项式,使的曲面拼接过程得以简单化。在文章最后我们用实验算例对本文给出的方法进行实现,验证了方法的有效性。
Based on the algebraic surface and space algebra curve based on the research results of multivar-iate polynomial interpolation problem, mainly to the quadratic algebraic surface along the spherical studies the splicing, obtained by Lagrange interpolation method defined in the sphere of quadratic polynomial decomposition method of splicing point group, and get a set of meet the spherical secondary splicing polynomial algebraic surface, make things simple, at the end of the article, we use experimental example to test and prove its effectiveness.
出处
《理论数学》
2020年第9期821-825,共5页
Pure Mathematics
关键词
代数曲面
多元Lagrange插值
光滑拼接
拼接点组
Algebraic Surface
Multivariate Lagrange Interpolation
Smooth Splicing
Splicing Point Group