期刊文献+

基于遗传算法的多层热防护服装的热传递模型 被引量:1

Thermal Transfer Model of Multilayer Thermal Protective Clothing Based on Genetic Algorithm
下载PDF
导出
摘要 本文以2018年全国大学生数学建模A题为例,利用热传导方程建立数学规划模型,研究了不同温度约束下的最佳防护服厚度问题。首先,用遗传算法求解得防护服温度空间分布表。其次,利用最小二乘法求第II层最优厚度d2 = 10.6 mm。目标函数为服装质量时d2 = 11.4 mm,d4 = 1.6 mm;目标函数为服装体积时d2 = 9.8 mm,d4 = 5.8 mm;目标函数为服装厚度时d2 = 10.7 mm,d4 = 20 mm。该模型在战场、消防、石油化工、金属冶炼等环境中均能得到较好的推广,保护工作人员免受高温高辐射危害,为处于特定环境下的人体提供保护屏障。 In this paper, we used the heat conduction equation to establish a mathematical programming model and studied the optimal protective clothing thickness model under different temperature constraints by taking the problem A in the Contemporary Undergraduate Mathematical Contest (CUMCM) in 2018 as an example. Firstly, we used the genetic algorithm to obtain the temperature spatial distribution table of the protective clothing. Secondly, we used the least-squares method to find the optimal thickness of the second layer of the clothing, d2 = 10.6 mm. When the optimization goal is the weight of the clothing, d2 = 11.4 mm, d4 = 1.6 mm;when the optimization goal is the volume of the clothing, d2 = 9.8 mm, d4 = 5.8 mm;when the optimization goal is the thickness of the clothing, d2 = 10.7 mm, d4 = 20 mm. The model can be better promoted in the battlefield, fire, pet-rochemical, metal smelting and other environments to protect the staff from high temperature. High radiation hazard provides a protective barrier for the human body in a specific environment.
机构地区 海南大学理学院
出处 《理论数学》 2020年第9期897-905,共9页 Pure Mathematics
关键词 热传导方程 最小二乘法 最优厚度 数学规划 遗传算法 Heat Conduction Equation Least Squares Method Optimal Thickness Mathematical Programming Genetic Algorithm
  • 相关文献

参考文献10

二级参考文献37

共引文献25

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部