期刊文献+

海森堡群上与分数次积分相关的交换子的有界性

The Boundedness of Commutators Associated with Fractional Integrals on the Heisenberg Group
下载PDF
导出
摘要 令L=-ΔHn+V为海森堡群Hn上具有Gaussian核上界的Schrödinger算子,其中非负位势V属于逆Hölder类Bq,q≥Q/2。对于0-α/2为L的分数次积分算子。假设b属于比经典BMO型空间大的BMOρθ(Hn)空间。该文证明了交换子[b,L-α/2]从Lp1(Hn)到Lp2(Hn)是有界的,其中112 =1/p1-α/Q。 Let L=-ΔHn+V be the Schrödinger operator on Hn with Gaussian kernel bounds, where the nonnegative potential V belongs to the reverse Hölder class Bq, q≥Q/2. Let L-α/2 be the frac-tional integrals of L for 0ρθ(Hn), which is larger than classical BMOρθ(Hn). We obtain the boundedness of the commutator [b,L-α/2] from Lp1(Hn) to Lp2(Hn), where 112 =1/ p1-α/Q.
作者 高春芳
出处 《理论数学》 2020年第10期928-937,共10页 Pure Mathematics
关键词 海森堡群 Gaussian上界 交换子 新BMO函数 Heisenberg Group Gaussian Bound Commutator New BMO Function
  • 相关文献

二级参考文献16

  • 1Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes 28. Princeton, New Jersey: Princeton Univ Press and Univ of Tokyo Press, 1982.
  • 2Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, New Jersey: Princeton Univ Press, 1993.
  • 3bin C, Liu H. The BMO-type space BMOc associated with Schrodinger operators on Heisenberg group. Submitted.
  • 4Dziubanski J, Garrigos G, Martinez T, Torrea J, Zienkiewicz J. BMO spaces related to SchrSdinger operators with potentials satisfying reverse Holder inequality. Math Z, 2005, 249:329- 356.
  • 5Gao W, Jiang Y, Tang L. BLOc spaces and maximal Riesz transforms associated with Schrodinger operators. Acta Math Sinica (Chinese Series), 2009, 52(2): 1101 -1110.
  • 6Yang D, Yang Do, Zhou Y. Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrodinger operators. Potential Anal, 2009, 30:271 -300.
  • 7Yang D, Zhou Y. Localized Hardy spaces H1 related to admissible functions on RD-spaces and applications to SchrSdinger operators. Tran Amer Math Soc, 2011, 363:1197-1239.
  • 8Yang D, Yang Do, Zhou Y. Local BMO and BLO spaces on RD-spaces and applications to Schrodinger operators. Commun Pure Appl Anal, 2010, 9(3): 779- 812.
  • 9Dziubafiski J, Zienkiewicz J. Hardy space H1 associated to Schrodinger operators with potentials satisfying reverse H61der inequality. Rev Mat Iberoam, 1999, 15:279 -296.
  • 10Coifman R R, Rochberg R. Another chanracterization of BMO. Proc Amer Math Soc, 1980, 79:249-254.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部