期刊文献+

无穷Laplace方程的超定边值问题

Overdetermined Boundary Value Problems for the Infinity Laplace Equation
下载PDF
导出
摘要 在有界环形区域上,研究一类无穷Laplace方程的超定边值问题,证明方程解的对称性及环形区域的对称性。首先构造与点到边界距离有关的web函数作为方程特解,此特解的存在性等价于Ω为Stadium-like区域,通过对Stadium-like区域的性质分析,证明Ω为一个同心球环。该结论可以推广到Laplace方程与p-Laplace方程。 The aim of this paper is to study a class of overdetermined boundary value problems of ∞-Laplace equations in bounded annular domains, and prove the symmetry of both the solutions and the annular domains. Firstly, we construct a web function which is related with the distance to the boundary as a special solution of ∞-Laplace equations. Then by analyzing the properties of stadi-um-like domains, we prove that Ω is a spherical ring with same center via the fact that the existence of special solutions is equivalent to that Ω is a stadium-like domain. Finally, we show that the conclusion can be extended to Laplace equations and p-Laplace equations.
出处 《理论数学》 2021年第2期164-172,共9页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献9

  • 1Li Y Y, Zhang L. Liouville type theorems and Harnack type inequalities for semilinear elliptic equations[J].to appear Journal d'Analyse Mathematique, 67 pages
  • 2Bianchi G. Non-existence of positive solutions to semilinear elliptic equations on Rn or Rn+ through the method of moving planes[J]. Comm Partial Differential Equations, 1997;22(9-10):1671-1690
  • 3Chipot M, Shafrir I, Fila M. On the solutions to some elliptic equations with nonlinear Neumann boundary conditions[J]. Adv Differential Equations, 1996;1:91-110
  • 4Li Y Y, Zhu M. Uniqueness theorems through the method of moving spheres[J]. Duke Math, 1995;80:383-417
  • 5Chipot M, Chlebik M, Fila M, Shafrir I. Existence of positive solutions of a semilinear elliptic equation in Rn+ with a nonlinear boundary condition[J]. Journal of Math Ana and Appl, 1998;223:429-471
  • 6Hu B. Nonexistence of a positive solutions of the Laplace equation with a nonlinear boundary condition[J].Differential and Integral equations, 1994;7:301-313
  • 7Hu B, Yin H M. The profile near blowup time for solution of the heat equation with a nonlinear boundary condition[J]. Trans Amer Math Soc, 1994;346:117-135
  • 8Lou Y, Zhu M. Classifications of nonnegative solutions to some elliptic problems[J]. Differential Integral Equations, 1999;12:601-612
  • 9Ou B. Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition[J].Diff and Integral Equ, 1996;9:1157-1164

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部