期刊文献+

关于某些连续函数的分数阶微积分的分形维数估计

A Remark on Fractal Dimension Estimation of Fractional Calculus of Certain Continuous Functions
下载PDF
导出
摘要 在本文中,我们对分形函数的定义进行了初步的研究,接着讨论了分形函数分数阶微积分的分形维数估计。我们使用新方法进行的估计表明分形函数的分形维数和分数阶微积分的阶之间存在一定关系。如果分形函数满足 Hölder 条件,则这种分形函数的 Riemann-Liouville 分数阶积分的上 Box 维数小于这些分形函数的上 Box 维数。这就意味着一个重要的结论:分形函数的 Riemann-Liouville 分数阶微积分的上 Box 维数不会增加。 In the present paper, we make research on the definition of fractal functions elementary. Then we discuss the fractal dimensions of fractional calculus of fractal functions. The estimation using a new method shows certain relationship between the fractal dimensions of fractal functions and orders of fractional calculus. If the fractal function satisfies the Hölder condition, the upper Box dimension of the Riemann-Liouville fractional integral of such fractal functions has been proved to be less than the upper Box dimension of those fractal functions. This means an important conclusion that the upper Box dimension of the Riemann-Liouville fractional integral of such fractal functions will not increase.
作者 王含西
出处 《理论数学》 2021年第4期477-484,共8页 Pure Mathematics
  • 相关文献

参考文献4

二级参考文献22

  • 1YaoKui,SuWeiyi,ZhouSongping.ON THE FRACTIONAL CALCULUS FUNCTIONS OF A FRACTAL FUNCTION[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(4):377-381. 被引量:4
  • 2ZhouSongping,YaoKui,SuWeiyi.FRACTIONAL INTEGRALS OF THE WEIERSTRASS FUNCTIONS: THE EXACT BOX DIMENSION[J].Analysis in Theory and Applications,2004,20(4):332-341. 被引量:5
  • 3Oldham K. B., Spanier J., The Fractional Calculus, New York: Academic Press, 1974.
  • 4Liang Y. S., Su W. Y., The relationship between the fractal dimensions of a type Of fractal functions and the order of their fractional calculus, Chaos, Solitons and Fractals, 2007, 34: 682-692.
  • 5Liang Y. S., Connection between the order of fractional calculus and fractional dimensins of a type of fractal functions, Analysis Theory and its Application, 2007, 23:354-363.
  • 6Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equation, New York: John Wiley. Sons. Inc., 1993.
  • 7Falconer J., Fractal Geometry: Mathematical Foundations and Applications, New York: John Wiley Sons Inc., 1990.
  • 8Hu T. Y., Lau K. S., Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 1993, 335(2): 649-665.
  • 9Liang Y. S., The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus, Applied Mathematics and Computation, 2008, 200: 197-207.
  • 10Tatom F. B., The relationship between fractional calculus and fractals, Fractals, 1995, 3(1): 217-229.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部