期刊文献+

强泛Gorenstein FC-投射模 被引量:1

Strongly Universal Gorenstein FC-Projective Modules
下载PDF
导出
摘要 引入弱Gorenstein FC-投射模和强泛Gorenstein FC-投射模,讨论了这两类模的同调性质,证明了在右余凝聚环R上,若r.FC.gl.dim(R)【∞,则FC-投射模类、Gorenstein FC-投射模类、弱Gorenstein FC-投射模类、强Gorenstein FC-投射模类和强泛Gorenstein FC-投射模类是同一个类。 Weak Gorenstein FC-projective and Strongly universal Gorenstein FC-projective modules are in-troduced, the homological properties of the two types of modules are investigated. It is proved that on the right cocoherent ring R, if r.FC.gl.dim(R)
作者 袁倩 张文汇
出处 《理论数学》 2021年第4期647-653,共7页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献26

  • 1Enoc.,EE Jen.,OMG.Gorenstein平坦模[J].南京大学学报(数学半年刊),1993,10(1):1-9. 被引量:5
  • 2Anderson F W, Fuller K R. Rings and Categories of Modules[ M ]. New York:Springer- Verlag, 1992.
  • 3Rotman J J. An Introduction to Homological Algebra[ M]. London :Academic Press, 1979.
  • 4Enochs E E, Jenda O M G. Gorenstein injective and projective modules [ J]. Math Zeit, 1995,220( 1 ) :611 -633.
  • 5Mao L X, Ding N Q. Gorenstein FP- injective and Gorenstein flat modules [J]. J Algebra Appl,2008 ,7 :491 -506.
  • 6Bennis D. Rings over which the class of Gorenstein flat modules is closed under extensions[ J]. Commun Algebra,2009,37:855 -868.
  • 7Yang X Y, Liu Z K. Gorenstein projective, injective and fiat modules[ J]. J Aust Math Soc,2009,87:395 -407.
  • 8Bennis D, Mahdou N. Global Gorenstein dimension[J]. Proc Am Math Soc,2010,138:461 -465.
  • 9Yang X Y, Liu Z K. Strongly Gorenstein projective, injective and flat modules [ J ]. J Algebra,2008,320 (7) :2659 -2674.
  • 10Bennis D, Mahdou N. Strongly Gorenstein projective, injective and fiat modules[ J]. J Pure Appl Algebra,2007,7:491 -506.

共引文献9

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部