期刊文献+

多连通域上泊松方程柯西问题的一种新型无网格方法 被引量:1

Cauchy Problem of the Poisson Equation in a Multi-Connected Domain by a New Meshless Method
下载PDF
导出
摘要 本文提出了一种求解多连通域中泊松方程柯西问题的无网格数值方法。结合拉普拉斯方程的基本解和径向基函数得到了数值解。由于系数矩阵是不适定的,因此采用正则化方法来求解所得到的线性方程组。通过对正则化参数的适当选取和对柯西数据的先验假设,得到了上述问题的正则化解,并且利用数值例子验证了该方法的有效性和准确性。 This paper presents a meshless numerical scheme to solve the Cauchy problem of the Poisson equation in a multi-connected domain. Fundamental solutions of Laplace’s equations and radial basis functions (RBFs) are used to obtain a numerical solution. Because the coefficient matrix is illposed, the Tikhonov regularization method is applied to solve the resulting system of linear equations. By the suitable choices of a regularization parameter and a priori assumption to the Cauchy data, the regularized solution to above problem is obtained. Several numerical examples are given to verify the efficiency and accuracy of the proposed method.
出处 《理论数学》 2021年第5期802-813,共12页 Pure Mathematics
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部