期刊文献+

具有Choquard项的拟线性Schrodinger-Poisson系统的非平凡解

Nontrivial Solutions of Quasilinear Schrodinger-Poisson Systems with Choquard Terms
下载PDF
导出
摘要 本文研究具有Choquard项的拟线性Schrodinger-Poisson 系统的非平凡解 其中α∈(0,3),4+α≤p 3,ℝ),并且Iα:ℝ33→ℝ是里斯位势。在V(x)的某些假设下,我们利用变分法与变量替换证明非平凡解的存在性。 In this paper, we study the existence of nontrivial solutions for a class of quasilinear Schrödinger equations of Choquard type: where α∈(0,3),4+α≤p 3, ℝ) and Iα: ℝ33→ℝ is the Riesz potential. Under some assumptions on V(x), we establish the existence of nontrivial solutions. Under the above assumptions, we use variational argument and variable substitution to prove the existence of nontrivial solution.
出处 《理论数学》 2022年第2期287-308,共22页 Pure Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部