期刊文献+

弱Gorenstein X-投(内)射模

Weak Gorenstein X-Projective (Injective) Modules
下载PDF
导出
摘要 引入弱Gorenstein X-投(内)射模,讨论其基本同调性质,证明在任意环R上,若lD(R) ≤ 1,则Gorenstein X-投(内)射模类、弱Gorenstein X-投(内)射模类、Gorenstein投(内)射模类和弱Gorenstein投(内)射模类是同一个类。 Weak Gorenstein X-projective (injective) modules are introduced. The homological properties of the two types of modules are investigated. It is proved that on the ring R, if lD(R) ≤ 1, then the class of Gorenstein X-projective (injective) modules, the class of weak Gorenstein X-projective (injective) modules, the class of Gorenstein projective (injective) modules and the class of weak Gorenstein projective (injective) modules are the same class.
作者 武新文
机构地区 敦煌市第二中学
出处 《理论数学》 2022年第4期525-531,共7页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献29

  • 1Enoc.,EE Jen.,OMG.Gorenstein平坦模[J].南京大学学报(数学半年刊),1993,10(1):1-9. 被引量:5
  • 2Anderson F W, Fuller K R. Rings and Categories of Modules[ M ]. New York:Springer- Verlag, 1992.
  • 3Rotman J J. An Introduction to Homological Algebra[ M]. London :Academic Press, 1979.
  • 4Enochs E E, Jenda O M G. Gorenstein injective and projective modules [ J]. Math Zeit, 1995,220( 1 ) :611 -633.
  • 5Mao L X, Ding N Q. Gorenstein FP- injective and Gorenstein flat modules [J]. J Algebra Appl,2008 ,7 :491 -506.
  • 6Bennis D. Rings over which the class of Gorenstein flat modules is closed under extensions[ J]. Commun Algebra,2009,37:855 -868.
  • 7Yang X Y, Liu Z K. Gorenstein projective, injective and fiat modules[ J]. J Aust Math Soc,2009,87:395 -407.
  • 8Bennis D, Mahdou N. Global Gorenstein dimension[J]. Proc Am Math Soc,2010,138:461 -465.
  • 9Yang X Y, Liu Z K. Strongly Gorenstein projective, injective and flat modules [ J ]. J Algebra,2008,320 (7) :2659 -2674.
  • 10Bennis D, Mahdou N. Strongly Gorenstein projective, injective and fiat modules[ J]. J Pure Appl Algebra,2007,7:491 -506.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部