期刊文献+

闵可夫斯基积芬斯勒流形的嘉当挠率 被引量:1

Cartan Torsion of Minkowskian Product Finsler Manifold
下载PDF
导出
摘要 设(M1, F1)和(M2, F2)是两个芬斯勒流形, 闵可夫斯基积芬斯勒度量是在乘积流形 M=M1×M2上赋予的芬斯勒度量 F=√f(K,H), 其中K=F12, H=F22, 且f是积函数. 本文主要研究闵可夫斯基积芬斯勒流形(M,F)的嘉当挠率和平均嘉当挠率, 利用张量分析法, 得到了闵可夫斯基积芬斯勒流形 (M,F)的嘉当挠率消失的必要条件;在 (M1, F1)和(M2, F2)的平均嘉当挠率消失的条件下, 给出了闵可夫斯基积芬斯勒流形 (M,F)的平均嘉当挠率消失的充分条件, 从而给出了一种刻画具有特殊性质的芬斯勒流形的有效方法. Let (M1, F1) and (M2, F2) be two Finsler manifolds, Minkowskian product Finsler metric is the Finsler metric F=√f(K,H) endowed on the product manifold M = M1 ×M2, where K=F12, H=F22, and f is product function. In this paper, we study Cartan torsion and mean Cartan torsion of Minkowskian product Finsler manifold (M,F). By using tensor analysis, we obtain the necessary condition that Minkowskian product Finsler manifold (M,F) has vanishing Cartan torsion. Also, we give the sufficient con- dition that Minkowskian product Finsler manifold (M,F) has vanishing mean Cartan torsion under the conditions of Finsler manifolds (M1, F1) and (M2, F2) have vanishing mean Cartan torsion. Then an effective method for characterise Finsler manifolds with special property is given.
出处 《理论数学》 2022年第5期826-837,共12页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献14

  • 1Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000.
  • 2Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000.
  • 3Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002.
  • 4Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12.
  • 5Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268.
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program.
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116.
  • 8Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753.
  • 9Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163.
  • 10Murray, M. K. and Rice, J. W., Differential Geometry and Statistics, Chapman & Hall, London, 1995.

共引文献29

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部