摘要
本文将Gorenstein FI-内射模推广到复形范畴。首先引入Gorenstein FI-内射复形的概念。其次研究Gorenstein FI-内射复形的一些性质。最后证明复形X是Gorenstein FI-内射复形,则每个Xn是Gorenstein FI-内射模,且对任意FI-内射复形I,复形Hom(I;X) 正合。
In this paper, Gorenstein FI-injective modules are extended to the category of complex. Firstly, the concept of Gorenstein FI-injective complex is introduced. Secondly,some properties of Gorenstein FI-injective complex are studied. Finally, it is proved that a complex X is Gorenstein FI-injective complex, and then each term Xn is Gorenstein FI-injective in R-Mod and Hom(I;X) is acyclic for any FI-injective complex I.
出处
《理论数学》
2022年第6期1041-1046,共6页
Pure Mathematics