期刊文献+

Gorenstein FI-内射复形的性质

Properties of Gorenstein FI-Injective Complexes
下载PDF
导出
摘要 本文将Gorenstein FI-内射模推广到复形范畴。首先引入Gorenstein FI-内射复形的概念。其次研究Gorenstein FI-内射复形的一些性质。最后证明复形X是Gorenstein FI-内射复形,则每个Xn是Gorenstein FI-内射模,且对任意FI-内射复形I,复形Hom(I;X) 正合。 In this paper, Gorenstein FI-injective modules are extended to the category of complex. Firstly, the concept of Gorenstein FI-injective complex is introduced. Secondly,some properties of Gorenstein FI-injective complex are studied. Finally, it is proved that a complex X is Gorenstein FI-injective complex, and then each term Xn is Gorenstein FI-injective in R-Mod and Hom(I;X) is acyclic for any FI-injective complex I.
作者 原雪娟
机构地区 西北师范大学
出处 《理论数学》 2022年第6期1041-1046,共6页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献10

  • 1Mao L X, Ding N Q. FI-injective and FI-flat modules [J]. Journal of Algebra,2007,309( 1 ) : 367-385.
  • 2Enochs E E, Jenda O G. Relative homological algebra ( Ⅰ ) [M]. Berlin: De Gruyter Expositions in Mathe- matics 30, 2000:105-125.
  • 3Enochs E E, Jenda O G. Relative homological algebra ( Ⅱ ) [M]. Berlin: De Gruyter Expositions in Mathe- matics 54, 2011 - 1-36.
  • 4Garcia R R. Covers and envelopes in the category of complexes of modules[M]. London: Chapman&Hall/ CRC, 1999: 1-90.
  • 5Wang Z P, Liu Z K. FP-injective complexes and FP-in- jective dimension of complexes[J]. Journal of the Aus- tralian Mathematical Society, 2007,91 (2) : 163 - 187.
  • 6Yang X Y, Liu Z K. FP-injective complexes[J]. Com- munications in Algebra, 2010,38(1): 131-142.
  • 7Zeng Y D, Chen J L. Envelopes and Covers by Mod- ules of Finite FP-Injective Dimensions[J]. Communi- cations in Algebra, 2010,38(10) : 3851-3867.
  • 8Wang Z P, Liu Z K. Complexes of gorenstein flat mod- ules and gorenstein cotorsion modules[J]. Communi- cations in Algebra, 2010,38(10) :3752-3766.
  • 9Xin D W, Chen J L, Zhang X X. Completely W-re- solved complexes[J]. Communications in Algebra, 2013,41 (3): 1094-1106.
  • 10Xin D W, Chen J L, Zhang X X. On gorenstein FP-in- jective and gorenstein fiat complexes[J]. Communica- tions in Algebra,2013, 41 (4) : 1247-1267.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部