期刊文献+

Lindley分布参数变点的贝叶斯估计

Bayesian Estimation of Parameter Change Points of Lindley Distribution
下载PDF
导出
摘要 利用贝叶斯方法研究了Lindley分布参数存在变点的参数估计问题,给出Lindley分布的变点模型,对参数选取无信息先验分布和伽玛分布两种情况,分别求出各参数的满条件分布,并通过R软件做随机模拟,得出各参数的MC误差都小于2%,且区间估计效果理想,表明通过贝叶斯估计研究各参数的估计值是有效的。 The parameter estimation problem of Lindley distribution with change points is studied by using Bayesian method. The change point model of Lindley distribution is given. The full conditional distribution of each parameter is calculated for the two cases of no information prior distribution and gamma distribution when the parameters are selected. The random simulation by R software shows that the MC error of each parameter is less than 2%, and the interval estimation effect is ideal. It shows that the estimation of each parameter by Bayesian estimation is effective.
出处 《理论数学》 2022年第10期1757-1764,共8页 Pure Mathematics
  • 相关文献

参考文献9

二级参考文献56

  • 1熊福生.对数伽玛与负对数伽玛分布的再生性[J].经济数学,2003,20(4):63-69. 被引量:9
  • 2潘建敏.NA序列中心极限定理的收敛速度(英文)[J].应用概率统计,1997,13(2):183-192. 被引量:37
  • 3Rosenblatt M. Remarks on Some Nonparametric Estimates of a Densi- ty Function [J].Ann. Math. Statist,1956, (27).
  • 4Wolverton, C T, Wagner T J. Asymptotically Optimal Discriminant Functions for Pattern Classification[J].IEEE Trans. Inform. Th., 1969, 15(2).
  • 5Lindley D V. Fiducial Distributions and Bayes' Theorem[J].Joumal of the Royal Statistieal Society, Series B, 1958, (20).
  • 6Ghitany M E, Atieh B, Nadarajah S. Lindley Distribution and its Ap- plications[J]. Mathematics and Computers in Simulation, 2008, (78).
  • 7Johns M V Jr,Van Ryzin J. Convergence Rates in Empirical Bayes Two-action Problems. II.Continuous Case[J].Ann.Math.Statist.,1972, (43).
  • 8Liang, T. On empirical Bayes Tests in a Positive Exponential Family [J].Joumal of Statistical Planning and Inference,2000,(83).
  • 9Jianjun Li, Shanti S. Gupta. Optimal Rate of Empirical Bayes Tests for Lower Truncation Parameters[J].Satisties & Probability Letters, 2003,65(3).
  • 10Liang, T. On empirieal Bayes Two-Tail Tests in a Positive Exponen- tial Family[J]. J. Nonparametr. Statist,2006, (18).

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部