摘要
本文考虑次线性算子的多线性交换子在变指标Herz Triebel-Lizorkin空间的有界性问题。通过利用变指标Herz Triebel-Lizorkin空间的等价刻画,极大算子控制法及Lipschitz函数的相关性质,证明了次线性算子与Lipschitz函数生成的多线性交换子是从变指标Herz空间到变指标Herz Triebel-Lizorkin空间有界的。
This paper is concerned with a boundedness problem for the multilinear commutators of sublinear operators on the Herz Triebel-Lizorkin spaces with variable exponent. By means of the maximum operator control method, the equivalent characterized of Herz Triebel-Lizorkin spaces with variable exponent and related properties of Lipschitz functions, it proved the boundedness of multilinear commutators for sublinear operators with Lipschitz functions from variable exponent Herz spaces to variable exponent Herz Triebel-Lizorkin spaces.
出处
《理论数学》
2022年第12期2153-2162,共10页
Pure Mathematics