期刊文献+

Faà di Bruno公式在恒等式及计数上的应用

Application of Faà di Bruno’s Formula in Identity and Counting
下载PDF
导出
摘要 Faàdi Bruno’ formular的相关研究一直处于停滞状态,之后,由于Faàdi Bruno在其它方面的应用,Lukacs开始将Faàdi Bruno用于数学统计学;罗曼用umbral calculus的定理对Faàdi Bruno方程进行了再论证,Constantine利用Faàdi Bruno扩展了关于集合划分的恒等式,并给出了它的概率说明,Chu利用Faàdi Bruno获得了一系列的行列式,Chou,Hsu和Shiue利用Faàdi Bruno构造了一种具有互逆性的函数,由此推导了一组恒等方程,然而并没有有关用Fáa di Bruno’s公式求组合恒等式以及进行对称群及集合分割上的组合数的研究存在。本文使用Fáa di Bruno’s公式求组合恒等式以及进行对称群及集合分割上的组合数的研究,通过Faàdi Bruno得到了各种著名组合数的恒等式,含括Catalan数,第一类及第二类Stirling数,q-二项式系数•••等,及Faàdi Bruno在计数上的应用;在第二节中,我们利用Faàdi Bruno得到了多种组合数的恒等式;在第三节中,我们由第一类及第二类Stirling数、错排数、Bell数的指数生成函数用Faàdi Bruno导出的恒等式获得这些数的组合意义,得到一些限制置换中圈结构和限制集合分割的子集大小的结果。 The research on Faàdi Bruno has been in a stagnant state. Later, because of the application of Faàdi Bruno in other aspects, Lukacs began to use Faàdi Bruno in mathematical statistics;Roman demonstrated the Faàdi Bruno equation again by using the theorem of umbral calculus. Constan-tine extended the identity of set partition by using Faàdi Bruno and gave its probability explana-tion. Chu obtained a series of determinants by using Faàdi Bruno, Chou;Hsu and Shiue used Faàdi Bruno to construct a kind of reciprocal function, and derived a set of identity equations from it. However, there is no research on finding combinatorial identities by using Fáa di Bruno’s formula and on the number of combinations on symmetric groups and set partitions. Faàdi Bruno's formula was used to find the combinatorial identity, and the combinatorial numbers on symmetric groups and set partitions were studied. In this paper, the identities of various famous combinatorial numbers, including Catalan numbers, the first and second Stirling numbers, q binomial coefficients, etc., and the application of Faàdi Bruno in counting were obtained through Faàdi Bruno;In the second section, we use Faàdi Bruno to obtain the identities of multiple combinatorial numbers;in the third section, we obtain the combined meanings of Stirling numbers, staggered numbers and Bell numbers from the exponential generating functions of the first and second types of Stirling numbers with the identities derived from Faàdi Bruno, and the subset size of set partitions can be obtained.
作者 沈萍
出处 《理论数学》 2022年第12期2231-2238,共8页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献29

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部