期刊文献+

黎曼球面上全纯等价关系的构造及其应用

Construction of Holomorphic EquivalenceRelations on Riemannian Spheres and TheirApplications
下载PDF
导出
摘要 本文研究复一维连通复解析流形上的一些特殊黎曼面,包括复一维射影空间 ℂP1、 扩充复平面C∞和复球面S2。 在全纯映射和双全纯映射意义下,这三个典型的黎曼面是全纯等价。 进而在Hopf 映射下, 推出S3与ℂP1全纯等价。 基于Frankel 猜想, 讨论了复一维射影空间ℂP1到紧K¨ahler 流形上关于能量最小化的全纯映射问题。 In this paper, we study some special Riemann surfaces on complex one-dimensional connected complex analytic manifolds, including complex one-dimensional projection space ℂP1, extended complex plane C∞ and complex sphere S2. In the sense of holomorphic mapping and biholomorphic mapping, these three typical Riemann surfaces are holomorphic equivalent. Furthermore, under Hopf mapping, the holomorphic equivalence between S3and ℂP1 is derived. Based on Frankle's conjecture, the problemof holomorphic mapping of energy minimization on complex one-dimensional projective spaces ℂP1 to compact Kahler manifolds is discussed.
出处 《理论数学》 2023年第6期1728-1743,共16页 Pure Mathematics
  • 相关文献

参考文献1

二级参考文献5

  • 1A Hurwitz. Uber Riemannsche Flachen mit gegebenen Verzueigungspunken. Math. Ann. , 1891,103: 1-60
  • 2A L Edmonds, R S Kulkarni, R E Stong. Realizability of branched coverings of surfaces. Trans. Amer. Math. Soc. , 1984,282 (2) :773-790
  • 3D Husemoller. Ramified coverings of Riemann surfaces. Duke. Math. J. , 1962,29:167-174
  • 4Xu Chun-Jing. Realizability of a class of branch data. (preprint)
  • 5Krzysztof Baranski. On realizability of branched coverings of the sphere. Topology and Its Applications,2001,116:279-291

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部