摘要
本文借助C*[0, ∞)空间与C[0, 1]空间之间的变换,将C*[0, ∞)空间上的逼近问题转变到C[0, 1]空间上进行研究。应用一阶、二阶模,证明了两类保持函数1和e−μx (μ > 0)的King型算子一致逼近的误差估计。
By means of a transformation between C*[0, ∞) and C[0, 1], the approximation problem in the space C*[0, ∞) can be reduced the same one in the space C[0, 1]. Using the first and second order moduli, we show a further uniform error estimate for two kinds of King-type operators which preserve 1 and e−μx (μ > 0).
出处
《理论数学》
2023年第7期2188-2199,共12页
Pure Mathematics