期刊文献+

K<sub>5,5</sub>− 5K<sub>2</sub>覆盖变换群为S<sub>4</sub>的正则覆盖的分类

2-Arc-Transitive Regular Covers of K<sub>5,5</sub> − 5K<sub>2</sub> with the Covering Transformation Group S<sub>4</sub>
下载PDF
导出
摘要 研究对称图的正则覆盖是代数图论的重要课题。为了更深入了解对称图的性质与分类,利用群论的基本知识,本文分类了K5,5 − 5K2的正则覆盖,其中覆盖变换群同构于S4,且保纤维自同构群的作用是2-弧传递的。最后,证明了满足条件的覆盖图是不存在的。 Studying the regular covering of symmetric graphs is an important topic in algebraic graph theory. In order to have a deeper understanding of the properties and classification of symmetric graphs, using the basic knowledge of group theory, in this paper, a classification is achieved for all the regular covers of K5,5 − 5K2 whose covering transformation group is isomorphic to S4 and whose fiber-preserving automorphism group acts 2-arc-transitively. It is proved that the covering graph that satisfies the conditions does not exist.
作者 李群苗
出处 《理论数学》 2023年第10期2978-2984,共7页 Pure Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部