摘要
随机递归梯度算法(SARAH)最近引起了人们的广泛关注。它允许一个简单的递归框架来更新随机梯度估计。SARAH与重要性抽样策略相结合得到了SARAH-I算法。基于此,本文提出了一种新的随机递归梯度方法。该算法将SARAH-I算法与具有二维二次终止性的BB类步长相结合,使SARAH-I算法的步长能够自适应计算,具有较好的数值性能。最后通过数值实验我们观察到,新算法对初始步长的选取不敏感,并且具有自动生成最优步长的能力。
The stochastic recursive gradient algorithm (SARAH) attracts much interest recently. It admits a simple recursive framework for updating stochastic gradient estimates. SARAH-I algorithm is ob-tained by combining SARAH with importance sampling strategy. Based on this, a new stochastic recursive gradient method is proposed in this paper. This algorithm combines SARAH-I algorithm with a BB-like stepsize with two dimensional quadratic termination property, which makes the SARAH-I algorithm automatically compute stepsizes and has good numerical performance. Finally, through numerical experiments, we observe that the new algorithm is insensitive to the selection of the initial stepsize, and has the ability to automatically generate the optimal stepsize.
出处
《理论数学》
2023年第11期3165-3175,共11页
Pure Mathematics