期刊文献+

基于Logistic回归和局部多项式回归的疾病风险预测

Disease risk Prediction Based on Logistic Regression and Local Polynomial Regression
下载PDF
导出
摘要 出血性脑卒中一种危险的神经系统疾病,由脑部血管破裂引起出血,病情急剧进展,病死率高,对患者和社会带来沉重负担。因此,研究出血性脑卒中的诊疗至关重要,可改善患者预后、减少残疾和死亡率,提高医疗系统效率和质量。本文利用Logistic回归、局部多项式回归对血肿扩张和血肿周围水肿两个指标建模,研究出血性脑卒中患者血肿扩张风险、血肿周围水肿发生及演进规律,最终结合临床和影像信息,预测出血性脑卒中患者的临床预后,并据此优化临床决策。 Hemorrhagic stroke is a dangerous neurological disease with bleeding caused by rupture of a blood vessel in the brain, which is rapidly progressive and has a high mortality rate, imposing a heavy burden on patients and society. Therefore, it is crucial to study the diagnosis and treatment of hemorrhagic stroke to improve patient prognosis, reduce disability and mortality, and improve the efficiency and quality of the healthcare system. In this paper, we used Logistic regression and local polynomial regression to model two indicators, hematoma expansion and perihematoma edema, to study the risk of hematoma expansion, the occurrence and evolution of perihematoma edema in hemorrhagic stroke patients, and finally to predict the clinical prognosis of hemorrhagic stroke patients by combining clinical and imaging information, and to optimize clinical decision-making accordingly.
作者 曹志杰
出处 《理论数学》 2023年第12期3663-3675,共13页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献12

  • 1Davies S, Russl S. NP completeness of searches for smallest possible feature sets[C]//Proceedings of the AAAI Fall Symposiums on Relevance, Menlo Park, 1994:37-39.
  • 2Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
  • 3Strobl Carolin, Boulesteix Anne-Laure, Kneib Thomas, et al. Conditional variable importance for random forests[J]. BMC Bioinformatics, 2008, 9 (1) : 1-11.
  • 4Reif David M, Motsinger Alison A, McKinney Brett A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]//IEEE Symposium on Computational In- telligence and Bioinformatics and Computational Bi- ology, 2006: 171-178.
  • 5Mohammed Khalilia, Sounak Chakraborty, Mihail Popescu. Predicting disease risks from highly im- balanced data using random forese[J]. BMC Medi- cal Informaties and Decision Making, 2011, 11(7): 51-58.
  • 6Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests[J]. Pattern Recognition, 2011, 44 (2): 330-349.
  • 7Inza I, Larranaga P, Blanco R. Filter versus wrap- per gene selection approaches in DNA microarray domains [J]. Artificial Intelligence in Medicine, 2004, 31(2): 91-103.
  • 8蒋盛益,郑琪,张倩生.基于聚类的特征选择方法[J].电子学报,2008,36(B12):157-160. 被引量:18
  • 9刘元宁,王刚,朱晓冬,赵正东,陈慧灵,邢翀.基于自适应多种群遗传算法的特征选择[J].吉林大学学报(工学版),2011,41(6):1690-1693. 被引量:17
  • 10刘柳,陶大程.Lasso问题的最新算法研究[J].数据采集与处理,2015,30(1):35-46. 被引量:10

共引文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部