期刊文献+

带跳随机比例微分方程补偿分步θ方法的收敛性和稳定性

Convergence and Stability of Compenseted Split-Step Theta Methods for Stochastic Pantograph Differential Equations with Jumps
下载PDF
导出
摘要 我们探讨了带跳的随机比例微分方程的补偿分步θ方法。首先,证明了该数值方法收敛,并且收敛阶为12,其次证明了解析解的均方稳定性,并且证明了补偿分步θ方法能保持解析解的均方稳定性,最后给出数值算例验证理论结果的正确性。 A semi-implicit compensated split-step θ method for stochastic pantograph differential equations with Poisson jumps is investigated in the paper. Firstly, the convergence of the numerical method is discussed, and it is proved that the convergence order is 1/2. Secondly, the mean-square stability of the analytical solution is proved, and it is found that the compensated split-step θ methods can maintain the mean square stability of the analytical solution under some conditions. Finally, two numerical examples are given to verify the correctness of the theoretical results.
出处 《理论数学》 2024年第4期384-398,共15页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献8

  • 1MAO Xue-rong. Stochastic Differential Equations and Applications[M]. New York: Harwood, 1997.
  • 2KUCHLER U, PLATEN E. Strong discrete time approximation of stochastic differential equations with time delay[J]. Math Comput Simulation, 2000, 54: 189-205.
  • 3BUCKWAR E. Introduction to the numerical analysis of stochastic delay differential equations[J]. J Comput Appl Math~ 2000~ 125: 297-307.
  • 4MAO Xue-rong. Numerical solutions of stochastic functional differential equations[J]. LMSJ Comput Math, 2003, 6: 141-161.
  • 5BUCKWAR E. One-step approximations for stochastic functional differential equations[J]. Appl Numer Math, 2006, 56: 667-681.
  • 6MAO Xue-rong, SABANIS S. Numerical solutions of stochastic differential delay equations under local Lipschitz condition[J]. J Comput Appl Math, 2003, 151(1): 215-227.
  • 7FAN Zhen-cheng, LIU Ming-zhu, CAO Wan-rong. Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations[J]. J Math Anal Appl, 2007, 325: 1142- 1159.
  • 8陈强,陈海明.THE RAZUMIKHIN TYPE THEOREMS OF STABILITY AND BOUNDEDNESS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY[J].Annals of Differential Equations,1997,13(1):19-22. 被引量:8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部