期刊文献+

Farkas引理在张量结构下的讨论

Discussion of Farkas’ Lemma in Tensor Structure
下载PDF
导出
摘要 Farkas引理在优化理论体系中具有十分重要的应用,张量是一种多维数组,在高维图像分析、超图聚类等方面具有重要的应用。本文研究张量结构下的Farkas引理,在张量的理论体系下对Farkas引理进行推广,通过引入非空闭凸集的概念及相关知识,利用点与闭凸集的分离定理,得到了张量结构下的Farkas引理。 Farkas’ lemma holds significant importance in the system of optimization theory. Tensors, as multidimensional arrays, find crucial applications in fields such as high-dimensional image analysis and hypergraph clustering. This paper explores the Farkas lemma within the context of tensor structures, extending its application within tensor theoretical frameworks. By introducing the concept of non-empty closed convex sets and relevant knowledge, and utilizing the separation theorem of points and closed convex sets, resulting in the derivation of the Farkas lemma within tensor.
作者 宋端
出处 《理论数学》 2024年第5期145-152,共8页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献25

  • 1Wang Y J, Xiu N H. Nonlinear Programming: Theory and Algorithms, 2nd edition. Xi'an: Shanxi Science and Technology Press, 2008.
  • 2Cryer C W. Numerical Functional Analysis. Oxford: Claredon Press, 1982,
  • 3Bartl D. Farkas' Lemma, Other Theorems of the Alternative, and Linear Programming in Infinite- dimensional Spaces: a Purely Linear-algebraic Approach. Linear and Multilinear Algebra, 2007, 55(4): 327-353.
  • 4Bartl D. A Short Algebraic Proof of the Farkas Lemma. SIAM J. on Optimization, 2008, 19(1): 234-239.
  • 5Rockafellar T R. Convex Analysis. New Jersey: Princeton University Press, 1970.
  • 6Lemarechal C. Fundamentals of Convex Analysis. Beijing: World Publishing Corporation, 2001.
  • 7Boyd S, Vandenberhe L. Convex Optimization. Cambridge: Cambridge University Press, 2000.
  • 8Stoer J, Witzgall C. Convexity and Optimization in Finite Dimensions, Vol.I. Heidelberg: Springer- Verlag, 1970.
  • 9Ben-Israel A. Linear Equations and Inequalities on Finite Dimensional, Real Or Complex, Vector Spaces: A Unified Theory. Journal of Mathematical Analysis and Applications, 1969, 27:367-389.
  • 10Berman A, Ben-Israel A. Linear Inequalities, Mathematical Programming and Matrix Theory. Mathematical Programming, 1971, 1:291-300.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部