期刊文献+

数学物理方程中的极值原理——具有斜导数边界条件的椭圆方程

The Maximum Principles of Differential Equations in Mathematical Physics—Elliptic Equations with Oblique Derivative Boundary Condition
下载PDF
导出
摘要 极值原理则是研究椭圆型偏微分方程的重要工具之一。椭圆方程的极值原理多数情况下都是在狄利克雷边界条件下得出的。本文在此基础上,首先对斜导数边界进行了说明,接着又对一般情形的极值原理进行简单概括,最后得出了带有斜导数边界条件椭圆方程的极值原理。 The maximum principle is one of the important tools for studying elliptic partial differential equations. In most situations, the maximum principle is derived under the Dirichlet boundary conditions. This paper considers the oblique derivative boundary conditions. Firstly, we explain the oblique derivative boundary. Then the general maximum principle is introduced. Finally, we obtain the maximum principle with the oblique derivative boundary condition for elliptic.
作者 马雷
出处 《理论数学》 2024年第6期218-223,共6页 Pure Mathematics
  • 相关文献

参考文献3

二级参考文献12

  • 1Protter M H 叶其孝(译).微分方程的最大值原理[M].北京:科学出版社,1985..
  • 2[1]Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order. 2nd ed. New York: Springer-Verlag, 1983
  • 3[2]Ladyzhenskaya O A, Uraltseva N N. Linear and quasilinear elliptic equations. New York: Academic Press, 1968
  • 4[3]Protter M H, Weinberger H F. Maximum principles in differential equations. New Jersey: Prentice-Hall, Englewood Cliffs, 1967
  • 5[4]Berestycki H, Nirenberg L, Varadhan S V R. The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm Pure and Appl Math, 1994, 47:47
  • 6[5]Chang K C, Jiang M Y. Parabolic equations and the Feynman-Kac formula on general bounded domains (preprint), Institute of Mathematics. Peking University
  • 7徐海祥.湖南大学博士论文[D].1990
  • 8Gilbarg. D Trudinger. NS Eleiptie partail Differential Equations of Second order [M]. 1993
  • 9M. Giaquinta and G, Madica: Remarks on the regularity of the minimigers of certain degenerate functionals[J], Manuscripta Math 1986, 57.55-99
  • 10谢朝东.华南理工大学硕士论文[D].1992

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部