期刊文献+

形式三角矩阵环上的Gorenstein FP<sub>n</sub>- 投射模

Gorenstein FP<sub>n</sub>-Projective Module overFormal Triangular Matrix Rings
下载PDF
导出
摘要 设 T =(U BA 0)是形式三角矩阵环, 其中 A, B 是环, U 是 (B, A)-双模. 证明了当 T 是左n-凝聚环,UA是平坦模,BU 是有限生成投射模, M =(M 2 M 1 ) φM 是左 T-模,若 M1 是Gorenstein FPn 投射左A-模, M2/ImφM 是 Gorenstein FPn- 投射左 B-模,且 ϕM 是单同态,则 M 是 Gorenstein FPn-投射左 T -模. 进而: U ⊗A M1 是 Gorenstein FPn- 投射左 B-模,当且仅当, M2 是 Gorenstein FPn- 投射左 B-模.Let T =(U BA 0) be a formal triangular matrix ring, where A and B are rings and U is (B;A)-bimodule. It is proved that T is a left n-cocherent ring, UA is a at module, BU is a finitely generated projective module, M =(M 2 M 1 ) φM is a left T-module. If M1 is a Gorenstein FPn-projective left A-module, M2/ImφM is a Gorenstein FPn-projective left B-module and ϕM is injective. Then M is a Gorenstein FPn-projective left T-module. In this instance, U ⊗A M1 is a Gorenstein FPn-projective left B-module, if and only if, M2 is a Gorenstein FPn-projective left B-module.
作者 张会晶
机构地区 西北师范大学
出处 《理论数学》 2024年第9期1-9,共9页 Pure Mathematics
  • 相关文献

参考文献2

二级参考文献9

  • 1[1]Anderson F W, Fuller K R. Ring and Categories of Modules:2nd edition[M]. New York: Spring-Verlag, 1992.
  • 2[2]Enochs E E, Rozas J R G, Oynarte L. Covering morphisms[J]. Comm.Algebra, 2000,28:3823-3835.
  • 3[3]Costa D L. Parameterizing families of non-noetherian Rings[J]. Comm. Algebra,1994,22: 3997-4011.
  • 4[4]Chen J, Ding N. On n-coherent rings[J]. Comm. Algebra,1996,24: 3211-3216.
  • 5[5]Xue W. On presented modules and almost excellent extensions[J].Comm. Algebra,1999,27: 1091-1102.
  • 6[6]Rotman J J. An Introduction to Homological Algebra[M].Florida: Academic Press, 1979.
  • 7[7]Goodearl K R. Ring Theory[M]. New York: Marcal Dekker,1976.
  • 8[8]Glaz S. Commutative Coherent Rings[M]. Berlin: Springer-Verlag, 1989.
  • 9陈东,王芳贵,蹇红,陈明钊.2-强Gorenstein半单环上模的结构及其应用[J].山东大学学报(理学版),2018,53(4):24-30. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部